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Abstract

In the primary visual cortex of primates and carnivores, functional architecture can be characterized by maps of various
stimulus features such as orientation preference (OP), ocular dominance (OD), and spatial frequency. It is a long-standing
question in theoretical neuroscience whether the observed maps should be interpreted as optima of a specific energy
functional that summarizes the design principles of cortical functional architecture. A rigorous evaluation of this
optimization hypothesis is particularly demanded by recent evidence that the functional architecture of orientation columns
precisely follows species invariant quantitative laws. Because it would be desirable to infer the form of such an optimization
principle from the biological data, the optimization approach to explain cortical functional architecture raises the following
questions: i) What are the genuine ground states of candidate energy functionals and how can they be calculated with
precision and rigor? ii) How do differences in candidate optimization principles impact on the predicted map structure and
conversely what can be learned about a hypothetical underlying optimization principle from observations on map
structure? iii) Is there a way to analyze the coordinated organization of cortical maps predicted by optimization principles in
general? To answer these questions we developed a general dynamical systems approach to the combined optimization of
visual cortical maps of OP and another scalar feature such as OD or spatial frequency preference. From basic symmetry
assumptions we obtain a comprehensive phenomenological classification of possible inter-map coupling energies and
examine representative examples. We show that each individual coupling energy leads to a different class of OP solutions
with different correlations among the maps such that inferences about the optimization principle from map layout appear
viable. We systematically assess whether quantitative laws resembling experimental observations can result from the
coordinated optimization of orientation columns with other feature maps.
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Introduction

Neurons in the primary visual cortex are selective to a

multidimensional set of visual stimulus features, including visual

field position, contour orientation, ocular dominance, direction of

motion, and spatial frequency [1,2]. In many mammals, these

response properties form spatially complex, two-dimensional

patterns called visual cortical maps [3–25]. The functional

advantage of a two dimensional mapping of stimulus selectivities

is currently unknown [26–28]. What determines the precise spatial

organization of these maps? It is a plausible hypothesis that natural

selection should shape visual cortical maps to build efficient

representations of visual information improving the ‘fitness’ of the

organism. Cortical maps are therefore often viewed as optima of

some cost function. For instance, it has been proposed that cortical

maps optimize the cortical wiring length [29,30] or represent an

optimal compromise between stimulus coverage and map conti-

nuity [31–44]. If map structure was largely genetically determined,

map structure might be optimized through genetic variation and

Darwinian selection on an evolutionary timescale. Optimization

may, however, also occur during the ontogenetic maturation of the

individual organism for instance by the activity-dependent

refinement of neuronal circuits. If such an activity-dependent

refinement of cortical architecture realizes an optimization

strategy its outcome should be interpreted as the convergence

towards a ground state of a specific energy functional. This

hypothesized optimized functional, however, remains currently

unknown. As several different functional maps coexist in the visual

cortex candidate energy functionals are expected to reflect the

multiple response properties of neurons in the visual cortex. In

fact, consistent with the idea of joint optimization of different

feature maps cortical maps are not independent of each other
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[8,10,19,23,42,45–48]. Various studies proposed a coordinated

optimization of different feature maps [31,33,34,37,38,40–

42,44,49–51]. Coordinated optimization appears consistent with

the observed distinct spatial relationships between different maps

such as the tendency of iso-orientation lines to intersect OD

borders perpendicularly or the preferential positioning of orien-

tation pinwheels at locations of maximal eye dominance

[8,10,19,23,42,45,47]. Specifically these geometric correlations

have thus been proposed to indicate the optimization of a cost

function given by a compromise between stimulus coverage and

continuity [33,35,38,40,42,44], a conclusion that was questioned

by Carreira-Perpinan and Goodhill [52].

Visual cortical maps are often spatially complex patterns that

contain defect structures such as point singularities (pinwheels)

[6,12,53,54,55] or line discontinuities (fractures) [13,56] and that

never exactly repeat [3–10,12–25,57]. It is conceivable that this

spatial complexity arises from geometric frustration due to a

coordinated optimization of multiple feature maps in which not

all inter-map interactions can be simultaneously satisfied [51,58–

61]. In many optimization models, however, the resulting map

layout is spatially not complex or lacks some of the basic features

such as topological defects [29,51,58,62,63]. In other studies

coordinated optimization was reported to preserve defects that

would otherwise decay [51,58]. An attempt to rigorously study

the hypothesis that the structure of cortical maps is explained by

an optimization process thus raises a number of questions: i)

What are the genuine ground states of candidate energy

functionals and how can they be calculated with precision and

rigor? ii) How do differences in candidate optimization principles

impact on the predicted map structure and conversely what can

be learned about an hypothetical underlying optimization

principle from observations on map structure? iii) Is there a

way to analyze the coordinated organization of cortical maps

predicted by optimization principles in general? If theoretical

neuroscience was able to answer these questions with greater

confidence, the interpretation and explanation of visual cortical

architecture could build on a more solid foundation than

currently available. To start laying such a foundation, we

examined how symmetry principles in general constrain the

form of optimization models and developed a formalism for

analyzing map optimization independent of the specific energy

functional assumed.

Minima of a given energy functional can be found by gradient

descent which is naturally represented by a dynamical system

describing a formal time evolution of the maps. Response

properties in visual cortical maps are arranged in repetitive

modules of a typical spatial length called hypercolumn. Optimi-

zation models that reproduce this typical length scale are therefore

effectively pattern forming systems with a so-called ‘cellular’ or

finite wavelength instability, see [64–66]. In the theory of pattern

formation, it is well understood that symmetries play a crucial role

[64–66]. Some symmetries are widely considered biologically

plausible for cortical maps, for instance the invariance under

spatial translations and rotations or a global shift of orientation

preference [51,63,67–71]. In this paper we argue that such

symmetries and an approach that utilizes the analogy between

map optimization and pattern forming systems can open up a

novel and systematic approach to the coordinated optimization of

visual cortical representations.

A recent study found strong evidence for a common design in

the functional architecture of orientation columns [3]. Three

species, galagos, ferrets, and tree shrews, widely separated in

evolution of modern mammals, share an apparently universal set

of quantitative properties. The average pinwheel density as well as

the spatial organization of pinwheels within orientation hypercol-

umns, expressed in the statistics of nearest neighbors as well as the

local variability of the pinwheel densities in cortical subregions

ranging from 1 to 30 hypercolumns, are found to be virtually

identical in the analyzed species. However, these quantities are

different from random maps. Intriguingly, the average pinwheel

density was found to be statistical indistinguishable from the

mathematical constant p up to a precision of 2%. Such apparently

universal laws can be reproduced in relatively simple self-

organization models if long-range neuronal interactions are

dominant [3,70–72]. As pointed out by Kaschube and coworkers,

these findings pose strong constraints on models of cortical

functional architecture [3]. Many models exhibiting pinwheel

annihilation [51,58] or pinwheel crystallization [62,63,73] were

found to violate the experimentally observed layout rules. In [3] it

was shown that the common design is correctly predicted in

models that describe long-range interactions within the OP map

but no coupling to other maps. Alternatively, however, it is

conceivable that they result from geometric frustration due to

inter-map interactions and joint optimization. In the current study

we therefore in particular examined whether the coordinated

optimization of the OP map and another feature map can

reproduce the quantitative laws defining the common design.

The presentation of our results is organized as follows. First we

introduce a formalism to model the coordinated optimization of

complex and real valued scalar fields. Complex valued fields can

represent for instance orientation preference (OP) or direction

preference maps [14,24]. Real valued fields may represent for

instance ocular dominance (OD) [1], spatial frequency maps

[20,45] or ON-OFF segregation [74]. We construct several

optimization models such that an independent optimization of

each map in isolation results in a regular OP stripe pattern and,

depending on the relative representations of the two eyes, OD

patterns with a regular hexagonal or stripe layout. A model-free,

symmetry-based analysis of potential optimization principles that

couple the real and complex valued fields provides a comprehen-

sive classification and parametrization of conceivable coordinated

optimization models and identifies representative forms of

coupling energies. For analytical treatment of the optimization

problem we adapt a perturbation method from pattern formation

theory called weakly nonlinear analysis [64–66,75–78]. This

method is applicable to models in which the spatial pattern of

Author Summary

Neurons in the visual cortex form spatial representations
or maps of several stimulus features. How are different
spatial representations of visual information coordinated in
the brain? In this paper, we study the hypothesis that the
coordinated organization of several visual cortical maps
can be explained by joint optimization. Previous attempts
to explain the spatial layout of functional maps in the
visual cortex proposed specific optimization principles ad
hoc. Here, we systematically analyze how optimization
principles in a general class of models impact on the
spatial layout of visual cortical maps. For each considered
optimization principle we identify the corresponding
optima and analyze their spatial layout. This directly
demonstrates that by studying map layout and geometric
inter-map correlations one can substantially constrain the
underlying optimization principle. In particular, we study
whether such optimization principles can lead to spatially
complex patterns and to geometric correlations among
cortical maps as observed in imaging experiments.

Optimization of Visual Cortical Maps
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columns branches off continuously from an unselective homoge-

neous state. It reduces the dimensionality of the system and leads

to amplitude equations as an approximate description of the

system near the symmetry breaking transition at which the

homogeneous state becomes unstable. We identify a limit in which

inter-map interactions that are formally always bidirectional

become effectively unidirectional. In this limit, one can neglect

the backreaction of the complex map on the layout of the co-

evolving scalar feature map. We show how to treat low and higher

order versions of inter-map coupling energies which enter at

different order in the perturbative expansion.

Second we apply the derived formalism by calculating optima

of two representative low order examples of coordinated

optimization models and examine how they impact on the

resulting map layout. Two higher order optimization models are

analyzed in Text S1. For concreteness and motivated by recent

topical interest [3,79,80], we illustrate the coordinated optimiza-

tion of visual cortical maps for the widely studied example of a

complex OP map and a real feature map such as the OD map.

OP maps are characterized by pinwheels, regions in which

columns preferring all possible orientations are organized around

a common center in a radial fashion [53,55,81,82]. In particular,

we address the problem of pinwheel stability in OP maps [51,71]

and calculate the pinwheel densities predicted by different

models. As shown previously, many theoretical models of visual

cortical development and optimization fail to predict OP maps

possessing stable pinwheels [29,51,58,62]. We show that in case

of the low order energies, a strong inter-map coupling will

typically lead to OP map suppression, causing the orientation

selectivity of all neurons to vanish. For all considered optimiza-

tion models, we identify stationary solutions of the resulting

dynamics and mathematically demonstrate their stability. We

further calculate phase diagrams as a function of the inter-map

coupling strength and the amount of overrepresentation of

certain stimuli of the co-evolving scalar feature map. We show

that the optimization of any of the analyzed coupling energies can

lead to spatially relatively complex patterns. Moreover, in case of

OP maps, these patterns are typically pinwheel-rich. The phase

diagrams, however, differ for each considered coupling energy, in

particular leading to coupling energy specific ground states. We

therefore thoroughly analyze the spatial layout of energetic

ground states and in particular their geometric inter-map

relationships. We find that none of the examined models

reproduces the experimentally observed pinwheel density and

spatially aperiodic arrangements. Our analysis identifies a

seemingly general condition for interaction induced pinwheel-

rich OP optima namely a substantial bias in the response

properties of the co-evolving scalar feature map.

Results

Modeling the coordinated optimization of multiple maps
We model the response properties of neuronal populations in

the visual cortex by two-dimensional scalar order parameter fields

which are either complex valued or real valued [53,83]. A

complex valued field z(x) can for instance describe OP or

direction preference of a neuron located at position x. A real

valued field o(x) can describe for instance OD or the spatial

frequency preference. Although we introduce a model for the

coordinated optimization of general real and complex valued

order parameter fields we consider z(x) as the field of OP and o(x)
as the field of OD throughout this article. In this case, the pattern

of preferred stimulus orientation q is obtained by

q(x)~
1

2
arg(z): ð1Þ

The modulus Dz(x)D is a measure of the selectivity at cortical

location x.

OP maps are characterized by so-called pinwheels, regions in

which columns preferring all possible orientations are organized

around a common center in a radial fashion. The centers of

pinwheels are point discontinuities of the field q(x) where the

mean orientation preference of nearby columns changes by 90

degrees. Pinwheels can be characterized by a topological charge q

which indicates in particular whether the orientation preference

increases clockwise or counterclockwise around the pinwheel

center,

qi~
1

2p

þ
Ci

+q(x)ds , ð2Þ

where Ci is a closed curve around a single pinwheel center at xi.

Since q is a cyclic variable in the interval ½0,p� and up to isolated

points is a continuous function of x, qi can only have values

qi~
n

2
, ð3Þ

where n is an integer number [84]. If its absolute value Dqi D~1=2,

each orientation is represented only once in the vicinity of a

pinwheel center. In experiments, only pinwheels with a topological

charge of +1=2 are observed, which are simple zeros of the field

z(x).

OD maps can be described by a real valued two-dimensional

field o(x), where o(x)v0 indicates ipsilateral eye dominance and

o(x)w0 contralateral eye dominance of the neuron located at

position x. The magnitude indicates the strength of the eye

dominance and thus the zeros of the field correspond to the

borders of OD.

In this article, we view visual cortical maps as optima of some

energy functional E. The time evolution of these maps can be

described by the gradient descent of this energy functional. The

field dynamics thus takes the form

Lt z(x,t)~F ½z(x,t),o(x,t)�

Lt o(x,t)~G½z(x,t),o(x,t)�,
ð4Þ

where F ½z,o� and G½z,o� are nonlinear operators given by

F ½z,o�~{
dE

dz
, G½z,o�~{

dE

do
. The system then relaxes towards

the minima of the energy E. The convergence of this dynamics

towards an attractor is assumed to represent the process of

maturation and optimization of the cortical circuitry. Various

biologically detailed models have been cast to this form [35,51,85].

All visual cortical maps are arranged in repetitive patterns of a

typical wavelength L. We splitted the energy functional E into a

part that ensures the emergence of such a typical wavelength for

each map and into a part which describes the coupling among

different maps. A well studied model reproducing the emergence

of a typical wavelength by a pattern forming instability is of the

Swift-Hohenberg type [65,86]. Many other pattern forming

systems occurring in different physical, chemical, and biological

contexts (see for instance [75–78]) have been cast into a dynamics

of this type. Its dynamics in case of the OP map is of the form

Optimization of Visual Cortical Maps
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Lt z(x,t)~L̂Lz(x,t){DzD2z , ð5Þ

with the linear Swift-Hohenberg operator

L̂L~r{ k2
czD

� �2
, ð6Þ

kc~2p=L, and N½z(x,t)� a nonlinear operator. The energy

functional of this dynamics is given by

E~{

ð
d2x z(x)L̂Lz(x){

1

2
Dz(x)D4

� �
: ð7Þ

In Fourier representation, L̂L is diagonal with the spectrum

l(k)~r{ k2
c{k2

� �2
: ð8Þ

The spectrum exhibits a maximum at k~kc. For rv0, all modes

are damped since l(k)v0,Vk and only the homogeneous state

z(x)~0 is stable. This is no longer the case for rw0 when modes

on the critical circle k~kc acquire a positive growth rate and now

start to grow, resulting in patterns with a typical wavelength

L~2p=kc. Thus, this model exhibits a supercritical bifurcation

where the homogeneous state looses its stability and spatial

modulations start to grow.

The coupled dynamics we considered is of the form

Lt z(x,t)~L̂Lz z(x,t){DzD2z{
dU

dz

Lt o(x,t)~L̂Lo o(x,t){o3{
dU

do
zc ,

ð9Þ

where L̂Lfo,zg~rfo,zg{ k2
c,fo,zgzD

� �2

, and c is a constant. To

account for the species differences in the wavelengths of the

pattern we chose two typical wavelengths Lz~2p=kc,z and

Lo~2p=kc,o. The dynamics of z(x,t) and o(x,t) is coupled by

interaction terms which can be derived from a coupling energy U .

In the uncoupled case this dynamics leads to pinwheel free OP

stripe patterns.

Symmetries constrain inter-map coupling energies
How many inter-map coupling energies U exist? Using a

phenomenological approach the inclusion and exclusion of

various terms has to be strictly justified. We did this by symmetry

considerations. The constant c breaks the inversion symmetry

o(x)~{o(x) of inputs from the ipsilateral (o(x)v0) or contra-

lateral (o(x)w0) eye. Such an inversion symmetry breaking could

also arise from quadratic terms such as o(x)2. In the methods

section we detail how a constant shift in the field o(x) can

eliminate the constant term and generate such a quadratic term.

Including either a shift or a quadratic term thus already

represents the most general case. The inter-map coupling energy

U was assumed to be invariant under this inversion. Otherwise

orientation selective neurons would, for an equal representation

of the two eyes, develop different layouts to inputs from the left or

the right eye. The primary visual cortex shows no anatomical

indication that there are any prominent regions or directions

parallel to the cortical layers [67]. Besides invariance under

translations T̂Tyz(x)~z(x{y) and rotations R̂Rwz(x)~z(R{1
w x) of

both maps we required that the dynamics should be invariant

under orientation shifts z(x)?e qz(x). Note, that the assumption of

shift symmetry is an idealization that uncouples the OP map from

the map of visual space. Bressloff and coworkers have presented

arguments that Euclidean symmetry that couples spatial locations to

orientation shift represents a more plausible symmetry for visual

cortical dynamics [68,87], see also [88]. The existence of orientation

shift symmetry, however, is not an all or none question. Recent

evidence in fact indicates that shift symmetry is only weakly broken

in the spatial organization of orientation maps [89,90]. A general

coupling energy term can be expressed by integral operators which

can be written as a Volterra series

E~
X?

u~uozuz

ð
P

i~1

uo

d2xi o(xi) P
uozuz=2

j~uoz1
d2xj z(xj)

P
k~uozuz=2z1

u

d2xk z(xk)Ku(x1, . . . ,xu) ,

ð10Þ

with an u-th. order integral kernel Ku. Inversion symmetry and

orientation shift symmetry require uo to be even and that the

number of fields z equals the number of fields z. The lowest order

term, mediating an interaction between the fields o and z is given by

u~4,uo~2 i.e.

E4~

ð
d2x1d2x2d2x3d2x4 o(x1)o(x2)z(x3)z(x4)

K4(x1,x2,x3,x4) :

ð11Þ

Next, we rewrite Eq. (11) as an integral over an energy density U .

We use the invariance under translations to introduce new

coordinates

xm~(1=4)
X4

j

xi

y1~x1{xm

y2~x2{xm

y3~x3{xm :

ð12Þ

This leads to

E4~

ð
d2xm

ð
d2y1d2y2d2y3 o(y1zxm)o(y2zxm)z(y3zxm)

z(xm{
X3

i

(yi{xm))K(y1,y2,y3)

~

ð
d2xm U4(xm) :

ð13Þ

The kernel K may contain local and non-local contributions. Map

interactions were assumed to be local. For local interactions the

integral kernel is independent of the locations yi. We expanded both

fields in a Taylor series around xm

z(xmzyi)~z(xm)z+z(xm)yiz . . . ,

o(xmzyi)~o(xm)z+o(xm)yiz . . .
ð14Þ

For a local energy density we could truncate this expansion at the

first order in the derivatives. The energy density can thus be written

Optimization of Visual Cortical Maps
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U4(xm)~

ð
d2y1d2y2d2y3 o(xm)z+o(xm)y1ð Þ o(xm)z+o(xm)y2ð Þ

z(xm)z+z(xm)y3ð Þ z(xm){+z(xm)
X

i

(yi{xm)

 !
K(y1,y2,y3) :

ð15Þ

Due to rotation symmetry this energy density should be invariant

under a simultaneous rotation of both fields. From all possible

combinations of Eq. (15) only those are invariant in which the

gradients of the fields appear as scalar products. The energy density

can thus be written as

U4~f (c1,c2, . . . ,c8)

~f (o2,z2,zz,oz,+o:+o,+z:+z,+z:+z,+o:+z) ,
ð16Þ

where we suppress the argument xm. All combinations cj can also

enter via their complex conjugate. The general expression for U4 is

therefore

U4~
X
iwj

l
(1)
ij cicjz

X
iwj

l
(2)
ij cicjz

X
i,j

l
(3)
ij cicj : ð17Þ

From all possible combinations we selected those which are

invariant under orientation shifts and eye inversions. This leads to

U4~l1o4zl2DzD4zl3(+o:+o)2zl4D+z:+zD2

zl5(+z:+z)2zl6(+o:+o)o2zl7(+z:+z)DzD2

zl8(+z:+z)z2zl9(+z:+z)z2

zl10(+o:+z)ozzl11(+o:+z)oz

zl12o2DzD2zl13D+o:+zD2zl14(+z:+z)o2

zl15(+o:+o)DzD2zl16(+z:+z)(+o:+o) :

ð18Þ

The energy densities with prefactor l1 to l9 do not mediate a

coupling between OD and OP fields and can be absorbed into the

single field energy functionals. The densities with prefactors l8 and l9
(also with l10 and l11) are complex and can occur only together with

l8~l9 (l10~l11) to be real. These energy densities, however, are not

bounded from below as their real and imaginary parts can have

arbitrary positive and negative values. The lowest order terms which

are real and positive definite are thus given by

U4~l12o2jzj2zl13j+:o+zj2zl14o2+z:+z

zl15+o:+ojzj2zl16 +z:+zð Þ +o:+oð Þ :
ð19Þ

The next higher order energy terms are given by

U6~o2DzD4zDzD2o4zo4+z:+zz . . . ð20Þ

Here the fields o(x) and z(x) enter with an unequal power. In the

corresponding field equations these interaction terms enter either in

the linear part or in the cubic nonlinearity. We will show in this

article that interaction terms that enter in the linear part of the

dynamics can lead to a suppression of the pattern and possibly to an

instability of the pattern solution. Therefore we considered also

higher order interaction terms.

These higher order terms contain combinations of terms in Eq.

(19) and are given by

U8~o4DzD4zD+o:+zD4zo4 +z:+zð Þ2z +o:+oð Þ2DzD4

z +z:+zð Þ2 +o:+oð Þ2zo2DzD2D+o:+zD2z . . .
ð21Þ

As we will show below examples of coupling energies

U~ao2DzD2zb D+z:+oD2zto4DzD4zE D+z:+oD4 , ð22Þ

form a representative set that can be expected to reproduce

experimentally observed map relationships. For this choice of

energy the corresponding interaction terms in the dynamics Eq. (9)

are given by

{
dU

dz
~Na½o,o,z�zNb½o,o,z�zNE½o,o,o,o,z,z,z�

zNt½o,o,o,o,z,z,z�

~{ao2zzb+ a+oð ÞzE2+ jaj2a+o
� �

{2to4jzj2z,

{
dU

do
~ eNNa½o,z,z�z eNNb½o,z,z�z eNN E½o,o,o,z,z,z,z�z

eNN t½o,o,o,z,z,z,z�

~{aojzj2zb+ a+zð ÞzE2+ jaj2a+z
� �

{2to3jzj4zc:c:

ð23Þ

with a~+z:+o and c:c: denoting the complex conjugate. In

general, all coupling energies in U4,U6, and U8 can occur in the

dynamics and we restrict to those energies which are expected to

reproduce the observed geometric relationships between OP and

OD maps. It is important to note that with this restriction we did

not miss any essential parts of the model. When using weakly

nonlinear analysis the general form of the near threshold dynamics

is insensitive to the used type of coupling energy and we therefore

expect similar results also for the remaining coupling energies.

Numerical simulations of the dynamics Eq. (9), see [63,91], with

the coupling energy Eq. (22) and a~E~t~0 are shown in Fig. 1.

The initial conditions and final states are shown for different bias

terms c and inter-map coupling strengths b. We observed that for

a substantial contralateral bias and above a critical inter-map

coupling pinwheels are preserved from random initial conditions

or are generated if the initial condition is pinwheel free. Without a

contralateral bias the final states were pinwheel free stripe

solutions irrespective of the strength of the inter-map coupling.

Calculating ground states by coupled amplitude
equations

We studied Eq. (9) with the low order inter-map coupling

energies in Eq. (22) using weakly nonlinear analysis. We therefore

rewrite Eq. (9) as

Lt z(x,t)~rzz(x,t){L̂L0
z z(x,t){N3,u½z,z,z�{N3,c½z,o,o�

Lt o(x,t)~roo(x,t){L̂L0
o o(x,t)zN2,u½o,o�{N3,u½o,o,o�

{ ~NN3,c½o,z,z� ,

ð24Þ

where we shifted both linear operators as L̂Lz ~rzzL̂L0
z ,

L̂Lo ~rozL̂L0
o. The constant term c in Eq. (9) is replaced by a
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quadratic interaction term N2,u½o,o�~~cco2 with ~cc!
ffiffiffiffi
ro
p

, see

Methods. The uncoupled nonlinearities are given by N3,u~DzD2z,
~NN3,u~o3 while N3,c and ~NN3,c are the nonlinearities of the low

order inter-map coupling energy Eq. (23). We study Eq. (24) close

to the pattern forming bifurcation where rz and ro are small. We

therefore expand both control parameters in powers of the small

expansion parameter m

rz~mrz1zm2rz2zm3rz3z . . .

ro~mro1zm2ro2zm3ro3z . . . :
ð25Þ

Close to the bifurcation the fields are small and thus nonlinearities

are weak. We therefore expand both fields as

o(x,t)~mo1(x,t)zm2o2(x,t)zm3o3(x,t)z . . .

z(x,t)~mz1(x,t)zm2z2(x,t)zm3z3(x,t)z . . .
ð26Þ

We further introduced a common slow timescale T~rzt and insert

the expansions in Eq. (24) and get

0~mL̂L0z1

zm2 {L̂L0z2zrz1z1{rz1LT z1

� �
zm3 {rz2LT z1zrz2z1zrz1z2{rz1LT z2{L̂L0z3{N3,u½z1,z1,z1�

� �
zm3 {N3,c½z1,o1,o1�ð Þ

..

.

ð27Þ

and

0~mL̂L0o1

zm2 {L̂L0o2zro1o1{rz1LT o1z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mro1zm2ro2z . . .

p
~NN2,u½o1,o1�

� �
zm3 {rz2LT o1zro2o1zro1o2{rz1LT o2{L̂L0o3{~NN3,u½o1,o1,o1�

� �
zm3 { ~NN3,c½o1,z1,z1�

� �
..
.

ð28Þ

We consider amplitude equations up to third order as this is the

order where the nonlinearity of the low order inter-map coupling

energy enters first. For Eq. (27) and Eq. (28) to be fulfilled each

individual order in m has to be zero. At linear order in m we get the

two homogeneous equations

L̂L 0
zz1~0, L̂L0

oo1~0 : ð29Þ

Thus z1 and o1 are elements of the kernel of L̂L0
z and L̂L0

o. Both

kernels contain linear combinations of modes with a wavevector

on the corresponding critical circle i.e.

z1(x,T)~
Xn

j

Aj(T)e
~kkj
:~xx
zAj{ (T)e{ ~kkj

:~xx
� �

o1(x,T)~
Xn

j

Bj(T)e
~kk0

j
:~xx
zBj(T)e

{ ~kk0
j
:~xx

� �
,

ð30Þ

with the complex amplitudes Aj~Aje
wj , Bj~Bje

yj and

~kkj~kc,z cos(jp=n),sin(jp=n)ð Þ, ~kk0j~kc,o cos(jp=n),sin(jp=n)ð Þ. In

view of the hexagonal or stripe layout of the OD pattern shown

in Fig. 1, n~3 is an appropriate choice. In the following sections

we assume kc,o~kc,z~kc i.e. the Fourier components of the

emerging pattern are located on a common circle. To account for

Figure 1. Pinwheel annihilation, preservation, and generation in numerical simulations for different strengths of inter-map
coupling and OD bias, ro~0:2,rz~0:02. Color code of OP map with zero contours of OD map superimposed. A c~0,b~0 B c~0,b~0:3 C and D
c~0:15,b~0:3. Initial conditions identical in A–C, Tf ~104,kc,o~kc,z .
doi:10.1371/journal.pcbi.1002466.g001
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species differences we also analyzed models with detuned OP and

OD wavelengths in part (II) of this study.

At second order in m we get

L̂L0z2zrz1z1{rz1LT z1~0

L̂L0o2zro1o1{rz1LT o1~0 :
ð31Þ

As z1 and o1 are elements of the kernel rz1~ro1~0. At third

order, when applying the solvability condition (see Methods), we

get

rz2LT z1~rz2z1{P̂Pc N3,u½z1,z1,z1�{P̂PcN3,c½z1,o1,o1�

rz2LT o1~ro2o1{
ffiffiffiffiffiffi
ro2

p
P̂Pc

~NN2,u½o1,o1�{P̂Pc
~NN3,u½o1,o1,o1�

{P̂Pc
~NN3,c½o1,z1,z1� :

ð32Þ

We insert the leading order fields Eq. (30) and obtain the

amplitude equations

rz2LT Ai~rz2Ai{
X

j

hij jBj j2Ai{hB2
i Ai{{

X
j

gij jAj j2Ai

{
X

j

fijAjAj{Ai{{ . . .

rz2LT Bi~ro2Bi{
X

j

hij jAj j2Bi{2
ffiffiffiffiffiffi
ro2

p
Biz1Biz2

{
X

j

~ggij jBj j2Bi{ . . . :

ð33Þ

For simplicity we have written only the simplest inter-map

coupling terms. Depending on the configuration of active modes

additional contributions may enter the amplitude equations. In

addition, for the product-type coupling energy, there are coupling

terms which contain the constant d, see Methods and Eq. (40). The

coupling coefficients are given by

gij~e{ ~kki
:~xx N3,u½e

~kki
:~xx,e

~kkj
:~xx,e{ ~kkj

:~xx�
�

zN3,u½e
~kkj
:~xx,e

~kki
:~xx,e{ ~kkj

:~xx�
�
~2

gii~e{ ~kki
:~xx N3,u½e

~kki
:~xx,e

~kki
:~xx,e{ ~kki

:~xx�~1

gij{~e{ ~kki
:~xx N3,u½e

~kki
:~xx,e{ ~kkj

:~xx,e
~kkj
:~xx�

�
zN3,u½e{ ~kkj

:~xx,e
~kki
:~xx,e

~kkj
:~xx�
�
~2

fij~e{ ~kki
:~xx N3,u½e

~kkj
:~xx,e{ ~kkj

:~xx,e
~kki
:~xx�

�
zN3,u½e{ ~kkj

:~xx,e
~kkj
:~xx,e

~kki
:~xx�
�
~2

fii~0

hij~e{ ~kki
:~xxN3,c½e

~kki
:~xx,e

~kkj
:~xx,e{ ~kkj

:~xx�

hii~e{ ~kki
:~xx N3,c½e

~kki
:~xx,e

~kki
:~xx,e{ ~kki

:~xx�

h~e{ ~kki
:~xx N3,c½e{ ~kki

:~xx,e
~kki
:~xx,e

~kki
:~xx� :

ð34Þ

From Eq. (33) we see that inter-map coupling has two effects on

the modes of the OP pattern. First, inter-map coupling shifts the

bifurcation point from rz to rz{
P

j h
(1)
ij DBj D2

� �
. This can cause a

potential destabilization of pattern solutions for large inter-map

coupling strength. Second, inter-map coupling introduces addi-

tional resonant interactions that for instance couple the modes Ai

and their opposite modes Ai{ . In case of A%B%1 the inter-map

coupling terms in dynamics of the modes B are small. In this limit

the dynamics of the modes B decouples from the modes A and we

can use the uncoupled OD dynamics, see Methods. When we scale

back to the fast time variable and set rz2~rz, ro2~ro we obtain

LtAi~rzAi{
X

j

hij jBj j2Ai{hB2
i Ai{{

X
j

gij jAj j2Ai

{
X

j

fijAjAj{Ai{

rzLtBi~roBi{
X

j

hij jAj j2Bi{2
ffiffiffiffi
ro

p
Biz1Biz2{

X
j

eggij jBj j2Bi :

ð35Þ

The amplitude equations are truncated at third order. If pattern

formation takes place somewhat further above threshold fifth order,

seventh order, or even higher order corrections are expected to

become significant and can induce quantitative modifications of the

low order solutions. If third order approximate solutions exhibit

degeneracies or marginal stability, higher orders of perturbation

theory will qualitatively change the solutions. However, none of the

solutions found in the studied models was only marginally stable.

This suggests that the obtained solutions are in general structurally

stable. A derivation of amplitude equation with higher order inter-

map coupling energies is presented in Text S1.

Interpretation of coupling energies
Using symmetry considerations we derived inter-map coupling

energies up to eighth order in the fields, see Eq. (19), Eq.(20), and

Eq.(21). Which of these various optimization principles could

reproduce realistic inter-map relationships such as a uniform

coverage of all stimulus features? We identified two types of

optimization principles that can be expected to reproduce realistic

inter-map relationships and good stimulus coverage. First,

product-type coupling energies of the form U~o2nDzD2n , n~
1,2,:::. These energies favor configurations in which regions of

high gradients avoid each other and thus leading to high coverage.

Second, gradient-type coupling energies of the form

U~D+o:+zD2n ,n~1,2,:::. In experimentally obtained maps, iso-

orientation lines show the tendency to intersect the OD borders

perpendicularly. Perpendicular intersection angles lead to high

coverage as large changes of the field z in one direction lead to

small changes of the field o in that direction. To see that the

gradient-type coupling energy favors perpendicular intersection

angles we decompose the complex field z(x) into the selectivity DzD
and the preferred orientation q. We obtain

U~D+z:+oD2n~DzD2n D+o:+ ln DzDD2z4D+o:+qD2
� �n

: ð36Þ

If the orientation selectivity is locally homogeneous, i.e. +lnDzD&0,

then the energy is minimized if the direction of the iso-orientation

lines (+q) is perpendicular to the OD borders. In our symmetry-

based analysis we further identified terms that are expected to lead

to the opposite behavior for instance mixture terms such as

U~o2+z:+z.

Pinwheels are prominent features in OP maps. We therefore

also analyze how different optimization principles impact on the

pinwheel positions with respect to the co-evolving feature maps.

The product-type coupling energies are expected to favor

pinwheels at OD extrema. Pinwheels are zeros of z and are thus

expected to reduce this energy term. They will reduce energy the
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most when DoD is maximal which should repel pinwheels from OD

borders, where o(x) is zero. Also the gradient-type coupling energy

is expected to couple the OD pattern with the position of

pinwheels. To see this we decompose the field z into its real and

imaginary part

U~ D+o:+ Re zD2zD+o:+ Im zD2
� �

: ð37Þ

At pinwheel centers the zero contours of Rez and Imz cross. Since

there +Rez and +Imz are almost constant and not parallel the

energy can be minimized only if D+oD is small at the pinwheel

centers, i.e. the extrema or saddle-points of o(x).

From the previous considerations we assume all coupling

coefficients of the energies to be positive. A negative coupling

coefficient can be saturated by higher order inter-map coupling

terms. In the following, we discuss the impact of the low order

inter-map coupling energies on the resulting optima of the system

using the derived amplitude equations. The corresponding analysis

for higher order inter-map coupling energies is provided in Text

S1.

Optima of particular optimization principles: Low order
coupling terms

As indicated by numerical simulations and weakly nonlinear

analysis of the uncoupled OD dynamics, see Methods, we

discussed the influence of the OD stripe, hexagon, and constant

solutions on the OP map using the coupled amplitude equations

derived in the previous section. A potential backreaction onto the

dynamics of the OD map can be neglected if the modes Aj of the

OP map are much smaller than the modes Bj of the OD map.

This can be achieved if rz%ro. We first give a brief description of

the uncoupled OP solutions. Next, we study the impact of the low

order coupling energies in Eq. (22) on these solutions. We

demonstrate that these energies can lead to a complete suppression

of orientation selectivity. In the uncoupled case there are for rzw0
two stable stationary solutions to the amplitude equations Eq. (35),

namely OP stripes

zst~Ae
~kk1
:~xxzwð Þ, A~

ffiffiffiffi
rz

p
, ð38Þ

and OP rhombic solutions

zrh~A
X2

j~1

e
~kkj
:~xxzwj ze{ ~kkj

:~xxzwj{
� �

, ð39Þ

with w1zw1{~w0, w2zw2{~w0zp, w0 an arbitrary phase, and

A~
ffiffiffiffiffiffiffiffiffi
rz=5

p
&0:447

ffiffiffiffi
rz
p

. In the uncoupled case the angle

a~arccos~kk1
:~kk2=k2

c between the Fourier modes is arbitrary. The

stripe solutions are pinwheel free while the pinwheel density for

the rhombic solutions varies as r~4 sin a and thus 0ƒrƒ4. For

the rhombic solutions pinwheels are located on a regular lattice.

We therefore refer to these and other pinwheel rich solutions

which are spatially periodic as pinwheel crystals (PWC). In

particular, we refer to pinwheel crystals with as rhombic spatial

layout as rPWC solutions and pinwheel crystals with a hexagonal

layout as hPWC solutions. Without inter-map coupling, the

potential of the two solutions reads Vst~{
1

2
r2

zvVrh~{
2

5
r2

z ,

thus the stripe solutions are always energetically preferred

compared to rhombic solutions.

In the following we study three scenarios in which inter-map

coupling can lead to pinwheel stabilization. First, a deformation of

the OP stripe solution can lead to the creation of pinwheels in this

solution. Second, inter-map coupling can energetically prefer the

(deformed) OP rhombic solutions compared to the stripe solutions.

Finally, inter-map coupling can lead to the stabilization of new

PWC solutions.

For the low order interaction terms the amplitude equations are

given by LtAi~{dV=dAi, LtBi~{dV=dBi with the potential

V~VAzVBzad2
X3

j

DAj D2zDAj{ D2
� �

z2ad A1A2{B3zA1A3{B2zA1{A2B3zA1{A3B2

� �
z
X

i,j

g
(1)
ij DAi D2DBj D2z

X
i=j

g
(2)
ij AiAjBiBjz

X
i=j

g
(2)
ij Ai{Aj{BiBj

z
X

i,j

g
(3)
ij AiAj{BiBjz

X
i,j

g
(3)
ij AiAj{BiBj ,

ð40Þ

with the uncoupled contributions

VA~{rz

X3

j

DAj D2z
1

2

X3

i,j

gij DAi D2DAj D2z
1

2

X3

i,j

fijAiAi{AjAj{

VB~{ro

X3

j

DBj D2z
1

2

X3

i,j

eggij DBi D2DBj D2 :

ð41Þ

The coupling coefficients read g
(1)
ij ~2az2b cos2 (aij), g

(2)
ij ~2az

b 1z cos2 (aij)
� �

, g
(3)
ij ~2azb 1z cos2 (aij)

� �
, g

(3)
ii ~azb, where

aij is the angle between the wavevector ~kki and ~kkj .

Product-type energy U~ao2DzD2
We first studied the impact of the low order product-type

coupling energy. Here, the constant d(c) enters explicitly in the

amplitude equations, see Eq. (40) and Eq. (68).

Stationary solutions and their stability. In the case of OD

stripes, see Methods, with B1~B,B2~B3~0 we get the following

amplitude equations

Lt A1~ rz{ad2{2aDBD2
� �

A1{aB2A1{znct:

Lt A2~ rz{ad2{2aDBD2
� �

A2{2adA3{Bznct:

Lt A3~ rz{ad2{2aDBD2
� �

A3{2adA2{Bznct:

ð42Þ

where nct. refers to non inter-map coupling terms

{
P3

j gij DAj D2Ai{
P3

j=i fijAjAj{Ai{ , resulting from the poten-

tial VA, see Eq. (41). The equations for the modes Ai{ are given

by interchanging the modes Ai and Ai{ as well as interchanging

the modes Bi and Bi. The OP stripe solution in case of inter-map

coupling is given by

z~A1e (~kk1
:~xxzw1)zA1{e{ (~kk1

:~xxzw1{ ) , ð43Þ

with A1~p3=2=(2
ffiffiffi
2
p

B2a), A1{~p=
ffiffiffi
2
p

, and p~rz{2B2a{ad2

{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(rz{ad2)(rz{a(4B2zd2))

q
and the phase relation w1{w1{

~2y1zp. In the uncoupled case (a~0) they reduce to A1{~0
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and A1~
ffiffiffiffi
rz
p

. With increasing inter-map coupling the amplitude

A1{ grows and the solutions are transformed, reducing the

representation of all but two preferred orientations. The param-

eter dependence of this solution is shown in Fig. 2A for different

values of the bias c. Both amplitudes become identical at

a~rz=(4B2zd2) with

A1~A1{~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rz{aB2{ad2

3

s
: ð44Þ

Figure 2. Stationary amplitudes with coupling energy U~a DzD2o2, ro~0:2. Solid (dashed) lines: stable (unstable) solutions to Eq. (42) (OD
stripes) and Eq. (51) (OD hexagons). A,B OD stripes, c~0 (blue), c~c� (green), c~1:4c� (orange). C,D OD hexagons, c~1:4c� (blue), c~3c� (red). A,C
Transition from OP stripe solutions, B,D Transition from OP rhombic solutions. E Potential for OP stripes (red) and OP rhombs (blue) interacting with
OD stripes, c~0. F Potential for OP stripes and OP rhombs interacting with OD hexagons. Arrows indicate corresponding lines in the phase diagram,
Fig. (3).
doi:10.1371/journal.pcbi.1002466.g002
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This pattern solution finally vanishes at

ac~rz=(B2zd2)~3rz=ro : ð45Þ

This existence border is thus independent of the OD bias c. Above

this coupling strength only the trivial solution Aj~0,Vj is stable.

In addition to the OP stripe patterns there exist rhombic OP

solutions, see Fig. 2B. These rhombic solutions are pinwheel rich

with a pinwheel density of r~4 sin p=3&3:46 but are energet-

ically not preferred compared to the stripe solutions, see Fig. 2E.

The rhombic solutions in the uncoupled case A1~A1{~

A2~A2{ , A3~A3{~0 are transformed by inter-map coupling.

The phase relations are given by

w1zw1{~w0, w1{w1{~2y1zp

w2zw2{~w0zp, w3zw3{~w0zp

y1zw2zw3~w0,

ð46Þ

where w0 is an arbitrary phase. Stationary amplitudes are given by

A1~A1{~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rzza(B2{d2)

5

s

A2~A2{~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3rz{12B2a{3ad2{1=3q

30

s

A3~A3{~A2
3rz{12B2a{3ad2z1=3q

20Bad
,

ð47Þ

with q~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{3600B2a2d2z({9rzz36B2az9ad2)2

q
. With in-

creasing inter-map coupling strength a the amplitudes A2~A2{

are suppressed, see Fig. (2)B. In addition, for nonzero bias c, there

is an increase of the amplitudes A3~A3{ . The amplitudes A2 and

A3 collapse at a=rz~3=(12B2z20Bdz3d2). A further increase of

the inter-map coupling strength leads to a suppression of these

amplitudes and finally to the OP stripe pattern where A2~A3~0.

In the case the OD map is a constant, Eq. (91), the amplitude

equations simplify to

Lt Ai~ rz{ad2
� �

Ai{
X

j

gij DAj D2Ai{
X

j

fijAjAj{Ai{ : ð48Þ

Thus inter-map coupling in this case only renormalizes the

bifurcation parameter and the energetic ground state is thus a

stripe pattern with an inter-map coupling dependent reduction of

the amplitudes

A1~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rz{ad2

q
,A2~A3~0 : ð49Þ

Therefore at ac~rz=d2 the stripe pattern ceases to exist and the

only stable solution is the trivial one i.e. Ai~0. In addition, there is

the rhombic solution with the stationary amplitudes

A1~A1{~A2~A2~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rz{ad2

5

s
,A3~0 : ð50Þ

In the case of OD hexagons Bi~Be yi , Eq. (90), the amplitude

equations read

Lt Ai~ rz{6aB2{ad2
� �

Ai{aB2

Ai{e2 yi z2A(iz1){e (yizyiz1)z2A(iz2){e (yizyiz2)
� �
{2aB2 Aiz1e (yi{yiz1)zAiz2e (yi{yiz2)

� �
{2adB A(iz1){e{ yiz2zA(iz2){e{ yiz1

� �
znct: ,

ð51Þ

where the indices are cyclic i.e. iz3~i. These amplitude

equations have stripe-like solutions as well as solutions with a

rhombic layout of the form A1~A1{~A2~A2{ , A3~A3{ .

For both solutions the stationary phases depend on the inter-map

coupling strength a. In contrast to the case of OD stripes and OD

constant solutions the amplitude equations (51) have an additional

type of PWC solution which have uniform amplitudes, Aj~Ae wi .

The dynamics of their phases is given by

Lt wi~2A2
X
j=i

sin wizwi{{wj{wj{

� �
{B2a

X
j=i

2 sin wi{wj{yizyj

� �
z2 sin wi{wj{{yi{yj

� �� �
{B2a sin wi{wi{{2yið Þ

{2daB sin wi{w(iz1){zyiz2

� �
zsin wi{w(iz2){zyiz1

� �� �
:

ð52Þ

When solving the amplitude equations numerically we

observe that the phase relations vary with the inter-map

coupling strength for non-uniform solutions. But for the

uniform solution the phase relations are independent of the

inter-map coupling strength. The phases of the uniform

solution are determined up to a free phase Q which results

from the orientation shift symmetry z?ze|Q of Eq. (9). We

therefore choose w1~y1. As an ansatz for the uniform

solutions we use

Aj~Aj{~A, j~1,2,3

wj~yjz(j{1)2p=3zDdj,2

wj{~{yjz(j{1)2p=3zD dj,1zdj,3

� �
,

ð53Þ

where di,j is the Kronecker delta and D a constant parameter.

Note, that z(x) cannot become real since wj={wj{ . The

equation for the uniform amplitudes is then given by

LtA~rzA{9A3{4aB2A{ad2AzABa B{2dð ÞcosD , ð54Þ

while the phase dynamics reads

Ltwj~{Ba B{2dð ÞsinD : ð55Þ

The stationarity condition is fulfilled for an arbitrary d only if

D~0 or D~p. The corresponding amplitudes are given by

solving the stationarity condition for the real part and read
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AD~0~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rz{a 3B2z2Bdzd2

� �
9

s
,

AD~p~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rz{a 5B2{2Bdzd2

� �
9

s
:

ð56Þ

We calculate the stability properties of all solutions by linear

stability analysis considering perturbations of the amplitudes

Aj?Azaj , Aj{?Azaj{ and of the phases wj?wjzQj ,

wj{?wj{zQj{ . This leads to a perturbation matrix M.

Amplitude and phase perturbations in general do not

decouple. We calculated the eigenvalues of the perturbation

M matrix numerically and checked the results by direct

numerical simulation of the amplitude equations. In case of

the uniform solutions Eq. (53) the perturbation matrix M is

explicitly stated in Text S3.

The stability of the D~0 and D~p uniform solutions depends

on the coupling strength a and on the sign of B{2dð Þ. As the

solution of B(c)~2d(c) is given by c~c� in the stability range of

OD hexagons there is only one possible stable uniform solution,

the D~p uniform solution. This solution ceases to exist at

rzva 5B2{2Bdzd2
� �

. This existence border is in fact indepen-

dent of the bias c and given by

ac~3rz=ro : ð57Þ

Thus the limit rz?0 makes the uniform solution unstable for

smaller and smaller coupling strengths.

Bifurcation diagram. For increasing inter-map coupling

strength the amplitudes of the OP solutions are shown in Fig. 2. In

case of inter-map coupling strength dependent stationary phases,

stationary solutions are calculated numerically using a Newton

method and initial conditions close to these solutions. We followed

the unstable solutions (dashed lines in Fig. 2) until this method did

not converge anymore. Not shown are solutions which are

unstable in general. The case of OP solutions when interacting

with OD stripes is shown in Fig. 2A,B. In case of OP stripes inter-

map coupling suppresses the amplitude A1 of the stripe pattern

while increasing the amplitude of the opposite mode A1{ . This

transformation reduces the representation of all but two preferred

orientations. When both amplitudes collapse the resulting OP map

is selective only to two orthogonal orientations namely q~w1 and

q~w1zp=2. We refer to these unrealistic solutions as orientation

scotoma solutions. The phase relations ensure that OD borders that

run parallel to the OP stripes are located at the OP maxima and

minima i.e. in the center of the orientation scotoma stripes. With

increasing inter-map coupling, this orientation scotoma pattern is

suppressed until finally all amplitudes are zero and only the

homogeneous solution is stable. In case of OP rhombs inter-map

coupling makes the rhombic pattern more stripe-like by reducing

the amplitude A2~A2{ . The mode A3~A3{ which is zero in the

uncoupled case increases and finally collapses with the mode A2.

Increasing inter-map coupling more suppresses all but the two

modes A1~A1{ , leading again to the orientation scotoma stripe

pattern.

The parameter dependence of OP solutions when interacting

with OD hexagons is shown in Fig. 2C,D. OP stripe solutions

became above a critical inter-map coupling strength unstable

against PWC solutions. This critical coupling strength strongly

depended on the OD bias. OP rhombic solutions also became

unstable against PWC but for a lower coupling strength than the

OP stripes. Thus there is at intermediate coupling strength a

bistability between stripe-like solutions and PWC solutions. The

potential of the OP stripe and OP rhombic solutions is shown in

Fig. 2E,F. Stripes are energetically preferred in the uncoupled case

as well as for small inter-map coupling strength for which they are

stable.

To summarize, stripe solutions were deformed but no pinwheels

were created for this solution. The rhombic solutions were

energetically not preferred for low inter-map coupling whereas

for intermediate inter-map coupling these solutions lose pinwheels

and became stripe solutions. Instead, additional pinwheel rich

solutions with a crystal layout became stable for intermediate

inter-map coupling. For large inter-map coupling orientation

selectivity was completely suppressed.

Phase diagram. The phase diagram as a function of the OD

bias c and the inter-map coupling strength a for this coupling

energy is shown in Fig. 3. When rescaling the inter-map coupling

strength as a=rz the phase diagram is independent of the

bifurcation parameter of the OP map rz. Thus for fixed ro&rz

the phase diagram depends only on two control parameters c=c�

and a=rz. The phase diagram contains the stability borders of the

uncoupled OD solutions c�,c�2,c�3,c�4. They correspond to vertical

lines, as they are independent of the inter-map coupling in the

limit rz%ro. At c~c� hexagons become stable. Stripe solutions

become unstable at c~c�2. At c~c�3 the homogeneous solution

becomes stable while at c~c�4 hexagons lose their stability. In the

units c=c� the borders c�2,c�3,c�4 vary slightly with ro , see Methods,

and are drawn here for ro~0:2. Colored lines correspond to the

stability and existence borders of OP solutions. In the region of

stable OD stripes the OP stripes run parallel to the OD stripes.

With increasing inter-map coupling strength the orientation

preference of all but two orthogonal orientations is suppressed.

In the region of stable OD hexagons stripe-like OP solutions

dominate for low inter-map coupling strength. Above a critical

bias dependent coupling strength the D~p uniform solution

becomes stable (blue line). There is a region of bistability between

stripe-like and uniform solutions until the stripe-like solutions lose

their stability (orange line). OP rhombic solutions lose their

stability when the uniform solution becomes stable. Thus there is

no bistability between OP rhombs and OP uniform solutions. As

in the case of OD stripes the uniform solution becomes unstable at

a~rz=(3B2). Also in the case of OD hexagons the inter-map

coupling leads to a transition towards the trivial solution where

there is no OP pattern at all. In case of the OD constant solution

the OP map is a stripe solution. Pinwheel rich solutions thus occur

only in the region of stable OD hexagons. In the following we

discuss the properties of these solutions.

Interaction induced pinwheel crystals. The uniform

solution Eq. (53) with D~p is illustrated in Fig. 4. For all

stationary solutions the positions of the pinwheels are fixed by the

OD map and there are no translational degrees of freedom. The

unit cell (dashed line) contains 6 pinwheels which leads to a

pinwheel density of r~6 cos p=6&5:2. Two of them are located

at OD maxima (contra center) while one is located at an OD

minimum (ipsi center). The remaining three pinwheels are located

at OD saddle-points. Therefore, all pinwheels are located where

the gradient of the OD map is zero. The pinwheel in the center of

the OP hexagon is at the ipsilateral OD peak. Because these

pinwheels organize most of the map while the others essentially

only match one OP hexagon to its neighbors we refer to this

pinwheel crystal as the Ipsi-center pinwheel crystal. The iso-orientation

lines intersect the OD borders (gray) exactly with a right angle.

The intersection angles are, within the stability range of OD

hexagons, independent of the bias c. The remarkable property of
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perfect intersection angles cannot be deduced directly from the

coupling energy term. The solution is symmetric under a combined

rotation by 600 and an orientation shift by {600. The symmetry of

the pattern is reflected by the distribution of preferred orientations,

see Fig. 4B. Although the pattern is selective to all orientations the

six orientations qzn
p

6
, n~0,:::,5 are slightly overrepresented.

To summarize, the low order product-type inter-map coupling

leads in case of OD hexagons to a transition from pinwheel free

stripe solutions towards pinwheel crystals. The design of the PWC

is an example of an orientation hypercolumn dominated by one

pinwheel. With increasing inter-map coupling the PWC solution is

suppressed until only the homogeneous solution is stable. In case of

OD stripes or the constant solution the OP solutions are pinwheel

free stripe pattern.

Gradient-type energy U~bD+z:+oD2
When using a gradient-type inter-map coupling energy the

interaction terms are independent of the OD shift d. In this

case, the coupling strength can be rescaled as bB2 and is

therefore independent of the bias c. The bias in this case only

determines the stability of OD stripes, hexagons or the

constant solution.

Stationary solutions and their stability. A coupling to

OD stripes is easy to analyze in the case of a gradient-type

inter-map coupling. The energetically preferred solutions are

OP stripes with the direction perpendicular to the OD stripes

for which U~0. This configuration corresponds to the Hubel

and Wiesel Ice-cube model [1]. In addition there are rPWC

solutions with the stationary amplitudes A1~A1{

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(rzz2B2b)=5

q
, A2~A2{~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(rz{B2b)=5

q
, A3~A3{~0,

and the stationary phases as in Eq. (46). Increasing inter-map

coupling strength b leads to an increase of the amplitudes A1~A1{

while decreasing the amplitudes A2~A2{ thus making the rhombic

solution more stripe-like.

In the case the OD map is a constant, Eq. (91), the gradient-

type inter-map coupling leaves the OP dynamics unaffected.

The stationary states are therefore OP stripes with an

arbitrary direction and rPWC solutions as in the uncoupled

case.

Figure 3. Phase diagram with the coupling energy U~ao2DzD2, ro~0:2,rz%ro. Vertical lines: stability range of OD stripes, hexagons, and
constant solution. Magenta (orange) line: transition of stripes (rhombs) to the orientation scotoma solution. Blue line: stability border for the D~p
uniform solution (hPWC). Green line: stability line of stripe-like solutions. Red line: pattern solutions ceases to exist, see Eq. (45) and Eq. (57). Blue
region: stability region of hPWC, gray region: No pattern solution exists.
doi:10.1371/journal.pcbi.1002466.g003
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In the case of OD hexagons the amplitude equations read

Lt Ai~ rz{3bB2
� �

Ai

z
5

4
bB2 Aiz1e (yi{yiz1)zAiz2e (yi{yiz2)

� �
{bB2 Ai{e2 yi z

5

4
A(iz1){e (yizyiz1)

�
z

5

4
A(iz2){e (yizyiz2)

�
znct::

ð58Þ

Using Ai~Aie
wi we obtain the phase equations

AiLt wi~
X
j=i

AjAj{Ai{ sin wizwi{{wj{wj{

� �
{B2b

X
j=i

5

4
Aj sin wi{wj{yizyj

� ��

z
5

4
Aj{ sin wi{wj{{yi{yj

� ��
{B2bAi{ sin wi{wi{{2yið Þ :

ð59Þ

These amplitude equations have stripe-like and rhombic solutions

with inter-map coupling dependent phase relations. Besides stripe-

like and rhombic solutions these amplitude equations also have

uniform solutions. Again we find that the ansatz Eq. (53) can

satisfy the stationarity condition. The phase dynamics in this case

reads

Lt wi~{
1

4
B2b sinD : ð60Þ

As in the case of the product-type inter-map coupling energy

stationary solutions are D~0 and D~p with the stationary

amplitudes

AD~0~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rz{3=2B2b

9

s
, AD~p~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rz{2B2b

9

s
: ð61Þ

We studied the stability properties of both stationary solutions by

linear stability analysis where amplitude and phase perturbations

in general do not decouple. The stability matrix of the uniform

solutions is given in Text S3. The eigenvalues are calculated

numerically. It turned out that the D~p solution is unstable for

bw0 while the D~0 solution becomes stable for b&0:05rz=B2.

The D~0 solution loses its stability above

bcB2~2rz=3 : ð62Þ

From thereon only the homogeneous solution Aj~0 is stable.

Bifurcation diagram. The course of the stationary ampli-

tudes when interacting with OD hexagons is shown in Fig. 5. In

case of inter-map coupling strength dependent stationary phases,

stationary solutions are calculated numerically using a Newton

method and initial conditions close to these solutions. We followed

the unstable solutions (dashed lines in Fig. 5) until this method did

not converge anymore. Not shown are solutions which are

unstable in general. The OP rhombic solution is almost

unchanged by inter-map coupling but above a critical coupling

strength the rhombs decay into a stripe-like solution. The

amplitude of the OP stripe solution is suppressed by inter-map

coupling and finally becomes unstable against the D~0 uniform

solution. Thus for large inter-map coupling only the uniform

solution is stable. A further increase in the inter-map coupling

suppresses the amplitude of this uniform solution until finally only

the homogeneous solution is stable.

Phase diagram. The phase diagram of this coupling energy

is shown in Fig. 6. We rescaled the inter-map coupling strength as

bB2=rz, where B is the stationary amplitude of the OD hexagons.

The stability borders are then independent of the OD bias in the

OD solutions and further independent of the bifurcation

parameter rz. This simplifies the analysis since the OP solutions

Figure 4. Ipsi-center pinwheel crystal. A OP map, superimposed are the OD borders (gray), 90% ipsilateral eye dominance (black), and 90%
contralateral eye dominance (white), ro~0:2,c~3c� . Dashed lines mark the unit cell of the regular pattern. B Distribution of preferred orientations.
doi:10.1371/journal.pcbi.1002466.g004
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and their stability depend on c only indirect via the amplitudes B.

In case of OD stripes or OD constant solution there is no pinwheel

crystallization. Instead the OP solutions are pinwheel free stripes.

In case of OD hexagons hPWCs become stable above

b&0:05rz=B2 (blue line). Rhombic OP patterns become unstable

at bB4=rz&0:17 and decay into a stripe-like solution (green line).

At bB4=rz&0:36 these stripe-like solutions become unstable

(orange line). Thus above bB4=rz&0:36 the hPWC is the only

stable solution. At bB2=rz~2=3 the pattern solution ceases to exist

(red line).

Interaction induced pinwheel crystals. The uniform

solution Eq. (53), D~0 is illustrated in Fig. 7. This PWC contains

only three pinwheels per unit cell leading to a pinwheel density of

r~3 cos p=6&2:6. Two of the three pinwheels are located at

maxima of the OD map (contra peak) while the remaining

pinwheel is located at the minimum (ipsi peak) of the OD map. A

remarkable property of this solution is that the pinwheel located

at the OD minimum, carries a topological charge of 1 such that

each orientation is represented twice around this pinwheel.

Pinwheels of this kind have not yet been observed in experimen-

tally recorded OP maps. This kind of uniform solution

corresponds to the structural pinwheel model by Braitenberg

[92]. We therefore refer to this solution as the Braitenberg pinwheel

crystal.

The iso-orientation lines are again perfectly perpendicular to

OD borders and this is independent of the bias c. The solution is

symmetric under a combined rotation by 1200 and an orientation

shift by {2p=3. Further it is symmetric under a rotation by 1800.
The pattern is selective to all orientations but the distribution of

represented orientations is not uniform. The three orientations

qzn
p

3
, n~0,:::,2 are overrepresented, see Fig. 7B.

Overall this OP map is dominated by uniform regions around

hyperbolic points. In contrast to the ipsi center PWC all pinwheels

in this OP map organize a roughly similar fraction of the cortical

surface.

Discussion

Summary of results
In this study we presented a symmetry-based analysis of models

formalizing that visual cortical architecture is shaped by the

coordinated optimization of different functional maps. In partic-

ular, we focused on the question of whether and how different

optimization principles specifically impact on the spatial layout of

functional columns in the primary visual cortex. We identified

different representative candidate optimization principles. We

developed a dynamical systems approach for analyzing the

simultaneous optimization of interacting maps and examined

Figure 5. Stationary amplitudes with U~bD+z:+oD2 and OD hexagons. Solid (dashed) lines: Stable (unstable) solutions to Eq. (58). Transition
from OP stripes towards the uniform solution (red), transition from OP rhombs towards the uniform solution (blue). Arrows indicate corresponding
lines in the phase diagram, Fig. (6).
doi:10.1371/journal.pcbi.1002466.g005
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how their layout is influenced by coordinated optimization. In

particular, we found that inter-map coupling can stabilize pinwheel-

rich layouts even if pinwheels are intrinsically unstable in the weak

coupling limit. We calculated and analyzed the stability properties of

solutions forming spatially regular layouts with pinwheels arranged

in a crystalline array. We analyzed the structure of these pinwheel

crystals in terms of their stability properties, spatial layout, and

geometric inter-map relationships. For all models, we calculated

phase diagrams showing the stability of the pinwheel crystals

depending on the OD bias and the inter-map coupling strength.

Although differing in detail and exhibiting distinct pinwheel crystal

phases for strong coupling, the phase diagrams exhibited many

commonalities in their structure. These include the general fact that

the hexagonal PWC phase is preceded by a phase of rhombic PWCs

and that the range of OD biases over which pinwheel crystallization

occurs is confined to the stability region of OD patch solutions.

Comparison to previous work
Our analytical calculations of attractor and ground states close a

fundamental gap in the theory of visual cortical architecture and

its development. They rigorously establish that models of

interacting OP and OD maps in principle offer a solution to the

problem of pinwheel stability [51,71]. This problem and other

aspects of the influence of OD segregation on OP maps have

previously been studied in a series of models such as elastic net

models [34,37,41,42,51,59], self-organizing map models

[38,40,44,49,50], spin-like Hamiltonian models [58,93], spectral

filter models [94], correlation based models [95,96], and evolving

field models [97]. Several of these simulation studies found a

higher number of pinwheels per hypercolumn if the OP map is

influenced by strong OD segregation compared to the OP layout

in isolation or the influence of weak OD segregation [51,93,97]. In

such models, large gradients of OP and OD avoid each other

[40,49]. As a result, pinwheel centers tend to be located at centers

of OD columns as seen in experiments [19,45,46,48,95]. By this

mechanism, pinwheels are spatially trapped and pinwheel

annihilation can be reduced [51]. Moreover, many models appear

capable of reproducing realistic geometric inter-map relationships

such as perpendicular intersection angles between OD borders

and iso-orientation lines [59,94,95]. Tanaka et al. reported from

numerical simulations that the relative positioning of orientation

pinwheels and OD columns was dependent on model parameters

Figure 6. Phase diagram with the coupling energy U~bD+z:+oD2, rz%ro. Vertical black lines: stability range of OD stripes, hexagons, and
constant solution. Blue line: stability border for the D~0 uniform solution. Green line: rhombic solutions become unstable. Orange line: stripe-like
solutions become unstable. Red line: pattern solutions cease to exist, see Eq. (61). Gray region: No pattern solution exists.
doi:10.1371/journal.pcbi.1002466.g006
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[95]. Informative as they were, almost all of these previous studies

entirely relied on simulation methodologies that do not easily

permit to assess the progress and convergence of solutions.

Whether the reported patterns were attractors or just snapshots of

transient states and whether the solutions would further develop

towards pinwheel-free solutions or other states thus remained

unclear. Moreover, in almost all previous models, a continuous

variation of the inter-map coupling strength was not possible

which makes it hard to disentangle the contribution of inter-map

interactions from intrinsic mechanisms. The only prior simulation

study of a coordinated optimization model that tracked the

number of pinwheels during the optimization process did not

provide evidence that pinwheel annihilation could be stopped but

only reported a modest reduction in annihilation efficiency [51].

From this perspective, the prior evidence for coordination induced

pinwheel stabilization appears relatively limited. Our analytical

results leave no room to doubt that map interactions can stabilize

an intrinsically unstable pinwheel dynamics. They also reveal that

interaction of orientation preference with a stripe pattern of OD is

per se not capable of stabilizing pinwheels.

The mathematical structure of interaction models
Independent of its predictions, our study clarifies the general

mathematical structure of interaction dominated optimization

models. To the best of our knowledge our study for the first time

describes an analytical approach for examining the solutions of

coordinated optimization models for OP and OD maps. Our

symmetry-based phenomenological analysis of conceivable cou-

pling terms provides a general classification and parametrization

of biologically plausible coupling terms. To achieve this we

mapped the optimization problem to a dynamical systems

problem which allows for a perturbation expansion of fixed

points, local minima, and optima. Using weakly nonlinear

analysis, we derived amplitude equations as an approximate

description near the symmetry breaking transition. We identified

a limit in which inter-map coupling becomes effectively

unidirectional enabling the use of the uncoupled OD patterns.

We studied fixed points and calculated their stability properties

for different types of inter-map coupling energies. This analysis

revealed a fundamental difference between high and low order

coupling energies. For the low order versions of these energies, a

strong inter-map coupling typically leads to OP map suppression,

causing the orientation selectivity of all neurons to vanish. In

contrast, the higher order variants of the coupling energies do

generally not cause map suppression but only influence pattern

selection, see Text S1. We did not consider an interaction with the

retinotopic map. Experimental results on geometric relationships

between the retinotopic map and the OP map are ambiguous. In

case of ferret visual cortex high gradient regions of both maps avoid

each other [42]. In case of cat, however, high gradient regions

overlap [18]. Such positive correlations cannot be easily treated with

dimension reduction models, see [98]. It is noteworthy that our

phenomenological analysis identified coupling terms that could

induce an attraction of high gradient regions. Such terms contain

the gradient of only one field and can thus be considered as a

mixture of the gradient and the product-type energy.

Conditions for pinwheel stabilization
Our results indicate that a patchy layout of a second visual map

interacting with the OP map is important for the effectiveness of

pinwheel stabilization by inter-map coupling. Such a patchy layout

can be easily induced by an asymmetry in the representation of the

corresponding stimulus feature such as eye dominance or spatial

frequency preference. In spatial frequency maps, for instance, low

spatial frequency patches tend to form islands in a sea of high

spatial frequency preference [45]. Also in cat visual cortex the

observed OD layout is patchy [99–103]. In our model, the patchy

layout results from the overall dominance of one eye. In this case,

OD domains form a system of hexagonal patches rather than

stripes enabling the capture and stabilization of pinwheels by inter-

map coupling. The results from all previous models did not

support the view that OD stripes are capable of stabilizing

pinwheels [51,93,97]. Our analysis shows that OD stripes are

indeed not able to stabilize pinwheels, a result that appears to be

independent of the specific type of map interaction. In line with

this, several other theoretical studies, using numerical simulations

Figure 7. The Braitenberg pinwheel crystal, D~0 uniform solution of Eq. (53). A OP map, superimposed are the OD borders (gray), 90%
ipsilateral eye dominance (black), and 90% contralateral eye dominance (white), ro~0:2,c~3c� . Dashed lines mark the unit cell of the regular pattern.
B Distribution of preferred orientations.
doi:10.1371/journal.pcbi.1002466.g007
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[51,93,97], indicated that more banded OD patterns lead to less

pinwheel rich OP maps. For instance, in simulations using an

elastic net model, the average pinwheel density of OP maps

interacting with a patchy OD layout was reported substantially

higher (about 2.5 pinwheels per hypercolumn) than for OP maps

interacting with a more stripe-like OD layout (about 2 pinwheels

per hypercolumn) [51].

Experimental evidence for pinwheel stabilization by
inter-map coupling

Several lines of biological evidence appear to support the

picture of interaction induced pinwheel stabilization. Supporting

the notion that pinwheels might be stabilized by the interaction

with patchy OD columns, visual cortex is indeed dominated by

one eye in early postnatal development and has a pronounced

patchy layout of OD domains [104–106]. Further support for the

potential relevance of this picture comes from experiments in

which the OD map was artificially removed resulting apparently in

a significantly smoother OP map [44]. In this context it is

noteworthy that macaque visual cortex appears to exhibit all three

fundamental solutions of our model for OD maps: stripes,

hexagons, and a monocular solution, which are stable depending

on the OD bias. In the visual cortex of macaque monkeys, all three

types of patterns are found near the transition to the monocular

segment, see [106] and Fig. (8). Here, OD domains form bands in

the binocular region and a system of ipsilateral eye patches at the

transition zone to the monocular region where the contralateral

eye gradually becomes more dominant. If pinwheel stability

depends on a geometric coupling to the system of OD columns

one predicts systematic differences in pinwheel density between

these three zones of macaque primary visual cortex. Because OD

columns in the binocular region of macaque visual cortex are

predominantly arranged in systems of OD stripes our analysis also

indicates that pinwheels in these regions are either stabilized by

other patchy columnar systems or intrinsically stable.

The geometry of interaction induced pinwheel crystals
One important general observation from our results is that map

organization was often not inferable by simple qualitative

considerations on the energy functional. The organization of

interaction induced hexagonal pinwheel crystals reveals that the

relation between coupling energy and resulting map structure is

quite complex and often counter intuitive. We analyzed the

stationary patterns with respect to intersection angles and

pinwheel positions. In all models, intersection angles of iso-

orientation lines and OD borders have a tendency towards

perpendicular angles whether the energy term mathematically

depends on this angle, as for the gradient-type energies, or not, as

for the product-type energies. Intersection angle statistics thus are

not a very sensitive indicator of the type of interaction optimized.

Mathematically, these phenomena result from the complex

interplay between the single map energies and the interaction

energies. In case of the low order gradient-type inter-map coupling

energy all pinwheels are located at OD extrema, as expected from

the used coupling energy. For other analyzed coupling energies,

however, the remaining pinwheels are located either at OD

saddle-points (low order product-type energy) or near OD borders

(higher order gradient-type energy), in contrast to the expection

that OD extrema should be energetically preferred. Remarkably,

such correlations, which are expected from the gradient-type

coupling energies, occur also in the case of the product-type

energies. Remarkably, in case of product type energies pinwheels

are located at OD saddle-points. which is not expected per se and

presumably result from the periodic layout of OP and OD maps.

Correlations between pinwheels and OD saddle-points have not

yet been studied quantitatively in experiments and may thus

provide valuable information on the principles shaping cortical

functional architecture.

How informative is map structure?
Our results demonstrate that, although distinct types of coupling

energies can leave distinguishing signatures in the structure of

maps shaped by interaction (as the OP map in our example),

drawing precise conclusions about the coordinated optimization

principle from observed map structures is not possible for the

analyzed models. In the past numerous studies have attempted to

identify signatures of coordinated optimization in the layout of

visual cortical maps and to infer the validity of specific optimization

Figure 8. OD patterns. A Stationary amplitudes of the OD dynamics. The course of Bst(c) Eq. (89) (blue), Bhex(c) Eq. (90) (red), and of d(c) Eq. (68)
(green) for ro~0:2. The solutions are plotted in solid lines within their stability ranges. B OD map of macaque monkey. Adapted from [106]. C Details
of B with stripe-like, patchy, and homogeneous layout.
doi:10.1371/journal.pcbi.1002466.g008
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models from aspects of their coordinated geometry [34,37,38,40–

42,44,49–51,58,59,93]. It was, however, never clarified theoretically

in which respect and to which degree map layout and geometrical

factors of inter-map relations are informative with respect to an

underlying optimization principle. Because our analysis provides

complete information of the detailed relation between map geometry

and optimization principle for the different models our results enable

to critically assess whether different choices of energy functionals

specifically impact on the predicted map structure and conversely

what can be learned about the underlying optimization principle

from observations of map structures.

We examined the impact of different interaction energies on the

structure of local minima and ground states of models for the

coordinated optimization of a complex and a real scalar feature

map such as OP and OD maps. The models were constructed

such that in the absence of interactions, the maps reorganized into

simple stripe or blob pattern. In particular, the complex scalar

map without interactions would form a periodic stripe pattern

without any phase singularity. In all models, increasing the

strength of interactions could eventually stabilize qualitatively

different, more complex, and biologically more realistic patterns

containing pinwheels that can become the energetic ground states

for strong enough inter-map interactions. The way in which this

happens provides fundamental insights into the relationships

between map structure and energy functionals in optimization

models for visual cortical functional architecture.

Our results demonstrate that the structure of maps shaped by

inter-map interactions is in principle informative about the type of

coupling energy. The organization of the complex scalar map that

optimizes the joined energy functional was in general different for

all different types of coupling terms examined. We identified a

class of hPWC solutions which become stable for large inter-map

coupling. This class depends on a single parameter which is

specific to the used inter-map coupling energy. Furthermore, as

shown in Text S1, pinwheel positions in rPWCs, tracked while

increasing inter-map coupling strength, were different for different

coupling terms examined and thus could in principle serve as a

trace of the underlying optimization principle. This demonstrates

that, although pinwheel stabilization is not restricted to a

particular choice of the interaction term, each analyzed phase

diagram is specific to the used coupling energy. In particular, in

the strong coupling regime substantial information can be

obtained from a detailed inspection of solutions.

In the case of the product-type coupling energies, the resulting

phase diagrams are relatively complex as stationary solutions and

stability borders depend on the magnitude of the OD bias. Here,

even quantitative values of model parameters can in principle be

constrained by analysis of the map layout. In contrast, for the

gradient-type coupling energies, the bias dependence can be

absorbed into the coupling strength and only selects the stationary

OD pattern. This leads to relatively simple phase diagrams. For

these models map layout is thus uninformative of quantitative

model parameters. We identified several biologically very implau-

sible OP patterns. In the case of the product-type energies, we

found orientation scotoma solutions which are selective to only

two preferred orientations. In the case of the low order gradient-

type energy, we found OP patterns containing pinwheels with a

topological charge of 1 which have not yet been observed in

experiments. If the relevant terms in the coupling energy could be

determined by other means, the parameter regions in which these

patterns occur could be used to constrain model parameters by

theoretical bounds.

The information provided by map structure overall appears

qualitative rather than quantitative. In both low order inter-map

coupling energies (and the gradient-type higher order coupling

energy, see Text S1), hPWC patterns resulting from strong

interactions were fixed, not exhibiting any substantial depen-

dence on the precise choice of interaction coefficient. In principle,

the spatial organization of stimulus preferences in a map is an

infinite dimensional object that could sensitively depend in

distinct ways to a large number of model parameters. It is thus

not a trivial property that this structure often gives essentially no

information about the value of coupling constants in our models.

The situation, however, is reversed when considering the

structure of rPWCs. These solutions exist and are stable although

energetically not favored in the absence of inter-map interactions.

Some of their pinwheel positions continuously depend on the

strength of inter-map interactions. These solutions and their

parameter dependence nevertheless are also largely uninforma-

tive about the nature of the interaction energy. This results from

the fact that rPWCs are fundamentally uncoupled system

solutions that are only modified by the inter-map interaction.

As pointed out before, preferentially orthogonal intersection

angles between iso-orientation lines and OD borders appear to be

a general feature of coordinated optimization models in the

strong coupling regime. Although the detailed form of the

intersection angle histogram is solution and thus model specific,

our analysis does not corroborate attempts to use this feature to

support specific optimization principles, see also [52,107,108].

The stabilization of pinwheel crystals for strong inter-map

coupling appears to be universal and provides per se no specific

information about the underlying optimization principle. In fact,

the general structure of the amplitude equations is universal and

only the coupling coefficients change when changing the coupling

energy. It is thus expected that also for other coupling energies,

respecting the proposed set of symmetries, PWC solutions can

become stable for large enough inter-map coupling.

Conclusions
Our analysis conclusively demonstrates that OD segregation

can stabilize pinwheels and induce pinwheel-rich optima in models

for the coordinated optimization of OP and OD maps when

pinwheels are intrinsically unstable in the uncoupled dynamics of

the OP map. This allows to systematically assess the possibility that

inter-map coupling might be the mechanism of pinwheel

stabilization in the visual cortex. The analytical approach

developed here is independent of details of specific optimization

principles and thus allowed to systematically analyze how different

optimization principles impact on map layout. Moreover, our

analysis clarifies to which extend the observation of the layout in

physiological maps can provide information about optimization

principles shaping visual cortical organization.

The common design observed in experimental OP maps [3] is,

however, not reproduced by the optima of the analyzed

optimization principles. Whether this is a consequence of the

applied weakly nonlinear analysis or of the low number of

optimized feature maps or should be considered a generic feature

of coordinated optimization models will be examined in part (II) of

this study [91]. In part (II) we complement our analytical studies

by numerical simulations of the full field dynamics. Such

simulations allow to study the rearrangement of maps during the

optimization process, to study the timescales on which optimiza-

tion is expected to take place, and to lift many of the mathematical

assumptions employed by the above analysis. In particular, we

concentrate on the higher order inter-map coupling energies for

which the derived amplitude equations involved several simplify-

ing conditions, see Text S1.
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Methods

Intersection angles
We studied the intersection angles between iso-orientation lines

and OD borders. The intersection angle of an OD border with an

iso-orientation contour a(x) is given by

a(x)~ cos{1 +o(x):+q(x)

D+o(x)DD+q(x)D

� �
, ð63Þ

where x denotes the position of the OD zero-contour lines. A

continuous expression for the OP gradient is given by +q~

Im+z=z. We calculated the frequency of intersection angles in the

range ½0,p=2�. In this way those parts of the maps are emphasized

from which the most significant information about the intersection

angles can be obtained [19]. These are the regions where the OP

gradient is high and thus every intersection angle receives a statistical

weight according to D+qD. For an alternative method see [10].

The transition from OD stripes to OD blobs
We studied how the emerging OD map depends on the overall

eye dominance. To this end we mapped the uncoupled OD

dynamics to a Swift-Hohenberg equation containing a quadratic

interaction term instead of a constant bias. This allowed for the use

of weakly nonlinear analysis to derive amplitude equations as an

approximate description of the shifted OD dynamics near the

bifurcation point. We identified the stationary solutions and studied

their stability properties. Finally, we derived expressions for the

fraction of contralateral eye dominance for the stable solutions.

Mapping to a dynamics with a quadratic term. Here we

describe how to map the Swift-Hohenberg equation

Lt o(x,t)~L̂Lo(x,t){o(x,t)3zc , ð64Þ

to one with a quadratic interaction term. To eliminate the

constant term we shift the field by a constant amount

o(x,t)~(x,t)zd. This changes the linear and nonlinear terms as

L̂L o?L̂L~oo{ k4
c{ro

� �
d

o3?{~oo3z3d~oo2z3d2~oozd3 :
ð65Þ

We define the new parameters ~rro~ro{3d2 and ecc~{3d. This

leads to the new dynamics

Lt ~oo~~rro ~oo{ k2
czD

� �2
~ooz~cc~oo2{~oo3{d3{ k4

c,o{ro

� �
dzc : ð66Þ

The condition that the constant part is zero is thus given by

{d3{ k4
c{ro

� �
dzc~0 : ð67Þ

For rov1 the real solution to Eq. (67) is given by

d~
21=3 kc{roð Þ

b
{

b

321=3
, ð68Þ

with b~ {27cz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
108 ro{kcð Þ3z729c2

q� �1=3

. For small c this

formula is approximated as

d&c
1

k4
c{ro

{c3 1

(k4
c{ro)4

z3c5 1

(k4
c{ro)7

z . . . ð69Þ

The uncoupled OD dynamics we consider in the following is

therefore given by

Lt ~oo~~rro~oo{ k2
czD

� �2
~oozecc~oo2{~oo3 : ð70Þ

This equation has been extensively studied in pattern formation

literature [77].

Amplitude equations for OD patterns. We studied Eq.

(70) using weakly nonlinear analysis. This method leads to

amplitude equation as an approximate description of the full field

dynamics Eq. (70) near the bifurcation point ~rro~0. We summarize

the derivation of the amplitude equations for the OD dynamics

which is of the form

Lt o(x,t)~L̂Lo(x,t)zN2½o,o�{N3½o,o,o� , ð71Þ

with the linear operator L̂L~ro{ k2
c,ozD

� �2

. In this section we

use for simplicity the variables o,ro,cð Þ instead of ~oo,~rro,~ccð Þ. The

derivation is performed for general quadratic and cubic non-

linearities but are specified later according to Eq. (9) as

N3½o,o,o�~o3 and N2½o,o�~co2. For the calculations in the

following, it is useful to separate ro from the linear operator

L̂L~rozL̂L0 , ð72Þ

therefore the largest eigenvalue of L̂L0 is zero. The amplitude of the

field o(x,t) is assumed to be small near the onset ro~0 and thus

the nonlinearities are small. We therefore expand both the field

o(x,t) and the control parameter ro in powers of a small expansion

parameter m as

o(x,t)~mo1(x,t)zm2o2(x,t)zm3o3(x,t)z . . . , ð73Þ

and

ro~mr1zm2r2zm3r3z . . . ð74Þ

The dynamics at the critical point ro~0 becomes arbitrarily slow

since the intrinsic timescale t~r{1
o diverges at the critical point.

To compensate we introduce a rescaled time scale T as

T~ro t, Lt~ro LT : ð75Þ

In order for all terms in Eq. (71) to be of the same order the

quadratic interaction term N2 must be small. We therefore rescale

N2 as
ffiffiffiffi
ro
p

N2. This preserves the nature of the bifurcation

compared to the case N2~0.

We insert the expansion Eq. (73) and Eq. (74) in the dynamics

Eq. (71) and get

0~mL̂L0o1

zm2 {L̂L0o2{r1LT o1zr1o1z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mr1zm2r2z . . .

p
N2½o1,o1�

� �
zm3 {L̂L0o3zr1 o2{LT o2ð Þzr2 o1{LT o1ð Þ{N3½o1,o1,o1�

� �
..
.

ð76Þ

We sort and collect all terms in order of their power in m. The

equation can be fulfilled for mw0 only if each of these terms is

Optimization of Visual Cortical Maps

PLOS Computational Biology | www.ploscompbiol.org 19 November 2012 | Volume 8 | Issue 11 | e1002466



zero. We therefore solve the equation order by order. In the

leading order we get the homogeneous equation

L̂L0o1~0 : ð77Þ

Thus o1 is an element of the kernel of L̂L0. The kernel contains

linear combinations of modes with wavevector ~kkj on the critical

circle D~kkj D~kc,o. At this level any of such wavevectors is possible.

We choose

o1~
Xn

j

Bj(T)ei~kkj
:~xx
z
Xn

j

Bj(T)e{i~kkj
:~xx , ð78Þ

where the wavevectors are chosen to be equally spaced
~kkj~kc,o cos(jp=n),sin(jp=n)ð Þ and the complex amplitudes

Bj~Bje
yj . The homogeneous equation leaves the amplitudes Bj

undetermined. These amplitudes are fixed by the higher order

equations. Besides the leading order homogeneous equation we get

inhomogeneous equations of the form

L̂L0om~Fm ð79Þ

To solve this inhomogeneous equation we first apply a solvability

condition. We thus apply the Fredholm Alternative theorem to Eq. (79).

Since the operator L̂L0 is self-adjoint L̂L0~L̂L0{, the equation is

solvable if and only if Fm is orthogonal to the kernel of L̂L0 i.e.

SFm,~ooT~0, VL̂L0~oo~0 ð80Þ

The orthogonality to the kernel can be expressed by a projection

operator P̂Pc onto the kernel and the condition SF ,~ooT~0 can be

rewritten as P̂PcF~0.

At second order we get

L̂L0o2~r1 o1{LT o1ð Þ : ð81Þ

Applying the solvability condition Eq. (80) we see that this

equation can be fulfilled only for r1~0. At third order we get

L̂L0o3~r2 o1{LT o1ð ÞzN2½o1,o1�{N3½o1,o1,o1� : ð82Þ

The parameter r2 sets the scale in which o1 is measured and we

can set r2~1. We apply the solvability condition and get

LT o1~o1zP̂PcN2½o1,o1�{P̂PcN3½o1,o1,o1� : ð83Þ

We insert our ansatz Eq. (78) which leads to the amplitude

equations at third order

LT Bi~BizP̂Pi

X
j,k

BjBke{ ~kki~xxN2½e
~kkj~xx,e

~kkk~xx�

{P̂Pi

X
j,k

BjBkBle
{ ~kki~xxN3½e

~kkj~xx,e
~kkk~xx,e

~kkl~xx� ,
ð84Þ

where P̂Pi is the projection operator onto the subspace fe ~kki~xxg of

the kernel. P̂Pi picks out all combinations of the modes which have

their wavevector equal to ~kki. In our case the three active modes

form a so called triad resonance ~kk1z~kk2z~kk3~0. The quadratic

coupling terms which are resonant to the mode B1 are therefore

given by

B2B3e{ ~kk1~xx N2½e{ ~kk2~xx,e{ ~kk3~xx�zN2½e{ ~kk3~xx,e{ ~kk2~xx�
� �

: ð85Þ

Resonant contributions from the cubic nonlinearity result from

terms of the form DBj D2Bi. Their coupling coefficients are given by

~ggij~N3½e
~kki~xx,e

~kkj~xx,e{ ~kkj~xx�zN3½e
~kki~xx,e{ ~kkj~xx,e

~kkj~xx�

zN3½e
~kkj~xx,e

~kki~xx,e{ ~kkj~xx�zN3½e{ ~kkj~xx,e
~kki~xx,e

~kkj~xx�

zN3½e
~kkj~xx,e{ ~kkj~xx,e

~kki~xx�zN3½e{ ~kkj~xx,e
~kkj~xx,e

~kki~xx� ,

ð86Þ

and

~ggii~N3½e
~kki~xx,e

~kki~xx,e{ ~kki~xx�zN3½e
~kki~xx,e{ ~kki~xx,e

~kki~xx�

zN3½e{ ~kki~xx,e
~kki~xx,e

~kki~xx� :
ð87Þ

When specifying the nonlinearities Eq. (9) the coupling coefficients

are given by ~ggij~6,~ggii~3. Finally, the amplitude equations (here

in the shifted variables (~rro,~cc) are given by

LtB1~~rroB1{3DB1D2B1{6 DB2D2zDB3D2
� �

B1z2~ccB2B3 , ð88Þ

where we scaled back to the original time variable t. Equations for

B2 and B3 are given by cyclic permutation of the indices.

Stationary solutions. The amplitude equations (88) have

three types of stationary solutions, namely OD stripes

ost(x)~2Bst cos xzyð Þzd, ð89Þ

with Bst~
ffiffiffiffiffiffiffi
~rr=3

p
, hexagons

ohex(x)~Bhex

X3

j~1

e yj e
~kkj
:~xxzc:c:zd, ð90Þ

with the resonance condition
P3

j
~kkj~0 and Bhex~{~cc=15zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~cc=15ð Þ2z~rr=15

q
. Finally, there is a homogeneous solution with

spatially constant eye dominance

oc(x)~d: ð91Þ

The spatial average of all solutions is So(x)T~d. The course of

Bst, Bhex, and of d(c) is shown in Fig. 8.

Linear stability analysis for OD patterns. We decom-

posed the amplitude equations (88) into the real and imaginary

parts. From the imaginary part we get the phase equation

Lty1~{2~cc sin y1zy2zy3ð Þ , ð92Þ

and equations for y2,y3 by cyclic permutation of the indices. The

stationary phases are given by y1zy2zy3~f0,pg. The phase

equation can be derived from the potential

V ½y�~{2ecccos(y1zy2zy3). We see that the solution

y1zy2zy3~0 is stable for eccw0(cv0) and the solution

y1zy2zy3~p is stable for ~ccv0(cw0).

Optimization of Visual Cortical Maps

PLOS Computational Biology | www.ploscompbiol.org 20 November 2012 | Volume 8 | Issue 11 | e1002466



We calculate the stability borders of the OD stripe, hexagon,

and constant solution in the uncoupled case. This treatment

follows [77]. In case of stripes the three modes of the amplitude

equations are perturbed as

B1?Bstzb1 , B2?b2 , B3?b3, ð93Þ

assuming small perturbations b1,b2, and b3. This leads to the

linear equations Lt
~bb~M~bb with the stability matrix

M~

~rr{9B2
st 0 0

0 ~rr{6B2
st 2~ccBst

0 2~ccBst ~rr{6B2
st

0B@
1CA : ð94Þ

The corresponding eigenvalues are given by

l~ {2~rr,{~rr{2
ffiffiffiffiffiffiffi
~rr=3

p
~cc,{~rrz2

ffiffiffiffiffiffiffi
~rr=3

p
~cc

� �
: ð95Þ

This leads to the two borders for the stripe stability

~rr~0, ~rr~
4

3
~cc2 : ð96Þ

In terms of the original variables ro,c the borders are given by

(0vrov1)

c�3~
3{2roð Þ ffiffiffiffiro

p

33=2
, c�2~

15{14roð Þ ffiffiffiffiro
p

153=2
: ð97Þ

To derive the stability borders for the hexagon solution ohex(x) we

perturb the amplitudes as

B1?Bhexzb1 , B2?Bhexzb2 , B3?Bhexzb3 : ð98Þ

The stability matrix is then given by

M~

{21Bhexz~rr {12B2
hex{2Bhex~cc {12B2

hex{2Bhex~cc

{12B2
hex{2Bhex~cc {21Bhexz~rr {12B2

hex{2Bhex~cc

{12B2
hex{2Bhex~cc {12B2

hex{2Bhex~cc {21Bhexz~rr

0B@
1CA,ð99Þ

and the corresponding eigenvalues are given by

l~ {45B2
hz~rr{4Bh~cc,{9B2

hz~rrz2Bh~cc,{9B2
hz~rrz2Bh~cc

� �
:ð100Þ

The stability borders for the hexagon solution are given by

~rr~{
1

15
~cc2, ~rr~

16

3
~cc2 : ð101Þ

In terms of the original variables we finally get

c�4~
12{7roð Þ ffiffiffiffiro

p ffiffiffi
5
p

24
ffiffiffi
3
p , c�~

51{50roð Þ ffiffiffiffiro
p

513=2
: ð102Þ

The phase diagram of this model is depicted in Fig. 9A. It shows

the stability borders c�,c�2,c�3, and c�4 for the three solutions

obtained by linear stability analysis. Without a bias term the OD

map is either constant, for rov0, or has a stripe layout, for

row0. For positive ro and increasing bias term there are two

transition regions, first a transition region from stripes to

hexagons and second a transition region from hexagons to the

constant solution.

The spatial layout of the OD hexagons consists of hexagonal

arrays of ipsilateral eye dominance blobs in a sea of contralateral

eye dominance, see Fig. 9A.

Contralateral eye fraction. To compare the obtained

solutions with physiological OD maps we quantified the fraction

of neurons selective to the contralateral eye inputs. For stripe and

hexagon solutions we thus calculated the fraction of contralateral

eye dominated territory Cst and Chex. In case of stripes this is a

purely one-dimensional problem. The zeros of the field are given

by

Figure 9. The uncoupled OD dynamics. A Phase diagram of the OD model Eq. (64). Dashed lines: stability border of hexagon solutions, solid line:
stability border of stripe solution, gray regions: stability region of constant solution B Percentage of neurons dominated by the contralateral eye
plotted for the three stationary solutions. Circles: numerically obtained values, solid lines: Cst and Chex.
doi:10.1371/journal.pcbi.1002466.g009
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ost(x)~2Bst cos xzyð Þzd~0, ð103Þ

with the solution

x~arccos
{d

2Bst

� �
: ð104Þ

As the field has a periodicity of p the area fraction is given by

Cst~arccos
{d

2Bst

� �
=p : ð105Þ

In case of hexagons we observe that the territory of negative o(x)
values is approximately a circular area. We obtain the fraction of

negative o(x) values by relating this area to the area of the whole

hexagonal lattice. In case of hexagons the field is given by

ohex(x)~2Bhex

X
j

cos ~kkj~xxzyj

� �
zd : ð106Þ

As an approximation we project the field onto the x-axis and

choose for simplicity yj~0,Vj. The field has its maximum at the

origin ohex(0,0)~6zd. The projection leads to

f (x)~2Bhex cos xz2 cos(1=2)xð Þzd : ð107Þ

The zeros f (x1)~0 are located at

x1~2 arccos
1

2
{1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3z

d

Bhex

s ! !
: ð108Þ

The circular area of positive ohex(x) values is now given by

Ac~px2
1. The periodicity of the hexagonal pattern is given by

f (x2)d~0~min(f )d~0~{3. This leads to x2~4p=3. The area of

the hexagon is therefore given by Ahex~3x2
2

ffiffiffi
3
p

=2. The contra

fraction is finally given by

1{Chex&
Ac

Ahex

~

ffiffiffi
3
p

2p
arccos

1

2
{1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3z

d

Bhex

s ! !2

: ð109Þ

The course of the fractions Cst and Chex is shown in Fig. 9B. At

the border c~c�, where hexagons become stable Chex&65:4%. At

the border c~c�4, where hexagons loose stability Chex&95:2%.

Both quantities are independent of ro. We confirmed our results by

direct numerical calculation of the fraction of positive ohex(x) pixel

values. Deviations from the result Eq. (109) are small. For c=c�&1
the zeros of Eq. (107) are not that well approximated with a

circular shape and the projection described above leads to the

small deviations which decrease with increasing bias c.

Supporting Information

Figure S1 Stationary amplitudes with coupling energy

U~tDzD4o4. Solid (dashed) lines: stable (unstable) solutions. A,B
OD stripes, c~0 (blue), c~c� (green), c~1:4c� (red). C,D OD

hexagons, c~c� (blue), c~3c� (red). A,C Transition from OP

stripe solutions, B,D Transition from OP rhombic solutions. E
Potential, Eq. (16), of OP stripes and OP rhombs interacting with

OD stripes. F Potential, Eq. (16), of OP stripes, OP rhombs, and

hPWC interacting with OD hexagons. Arrows indicate corre-

sponding lines in the phase diagram, Fig. (S2).

(TIF)

Figure S2 A Phase diagram with coupling energy

U~to4DzD4, ro~0:2,rz%ro. Vertical black lines: stability range

of OD stripes, hexagons, and constant solutions. Magenta (orange)

line: Stability border of orientation scotoma stripes. Green solid

line: Stability border of rhombic solutions. Red solid line: Stability

border of PWC solutions, red dashed line: cc, B Course of Eq. (27),

dashed line: D~p. C Stability border between Eq. (27) solution

and the D~p solution as a function of ro (vertical red line in A).

(TIF)

Figure S3 Bias dependent pinwheel crystals, Eq. (27) A
c~c�, B c~1:3c�, C c~1:6c�, D c~2c�. OP map, superim-

posed are the OD borders (gray), 90% ipsilateral eye dominance

(black), and 90% contralateral eye dominance (white), ro~0:2.

Dashed lines mark the unit cell of the regular pattern. E,F
Distribution of orientation preference. G Intersection angles

between iso-orientation lines and OD borders.

(TIF)

Figure S4 Stationary amplitudes with coupling energy

U~E D+z:+oD4, A Solid (dashed) lines: Stable (unstable) solutions.

Blue: rPWC, green: distorted rPWC, red: hPWC. Black lines:

stripe-like solutions. B Potential, Eq. (16), of OP stripes (black), OP

rhombs (blue), and hPWC solutions (red). Arrows indicate

corresponding lines in the phase diagram, Fig. (S5).

(TIF)

Figure S5 Phase diagram with coupling energy

U~E D+z:+oD4, for rz%ro. Vertical lines: stability range of OD

hexagons, green line: transition from rPWC to distorted rPWC,

red line: stability border of hPWC, blue line: stability border of

distorted rPWC. Above orange line: hPWC corresponds to ground

state of energy.

(TIF)

Figure S6 Rhombic pinwheel crystals. A OP map with

superimposed OD borders (gray), 90% ipsilateral eye dominance

(black), and 90% contralateral eye dominance (white), c~3c�,
ro~0:2. B Selectivity Dz(x)D, white: high selectivity, black: low

selectivity.

(TIF)

Figure S7 Contra-center pinwheel crystals. A,B OP map,

superimposed are the OD borders (gray), 90% ipsilateral eye

dominance (black), and 90% contralateral eye dominance (white),

ro~0:2,c~3c�. A D~arccos(5=13), B D~{arccos(5=13). C
Distribution of orientation preference. D OP map with superim-

posed OD map for three different values (c~c�,c~ c�4{c�
� �

=

2zc�,c~c�4) of the OD bias. E Selectivity Dz(x)D, white: high

selectivity, black: low selectivity. F Distribution of intersection

angles.

(TIF)

Figure S8 Inter-map coupling strength dependent pin-
wheel positions. OD map, superimposed pinwheel positions

(points) for different inter-map coupling strengths, c=c�~3.

Numbers label pinwheels within the unit cell (dashed lines). Blue

(green, red) points: pinwheel positions for rPWC (distorted rPWC,

hPWC) solutions. A U~E D+z:+oD4, using stationary amplitudes

from Fig. (S4)(a). Positions of distorted rPWCs move continuously

(pinwheel 1,3,4). B U~t DzD4o4, using stationary amplitudes from

Fig. (S1). D Positions of rPWCs move continuously (pinwheel 5,6).

(TIF)
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Text S1 Derivation of higher order amplitude equations
and the analysis of optima for the higher order gradient-
type and product-type inter-map coupling energies.
(PDF)

Text S2 Amplitude equations for the OP dynamics in
case of the high order inter-map coupling energies

U~ED+z:+oD4 and U~tDzD4o4.
(PDF)

Text S3 Stability matrices for the low order inter-map
coupling energies.
(PDF)
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67. Braitenberg V, Schütz A (1998) Cortex: Statistics and Geometry of Neuronal

Connectivity. Berlin: Springer Verlag.

68. Bressloff PC, Cowan JD, Golubitsky M, Thomas PJ, Wiener MC (2002) What

geometric visual hallucinations tell us about the visual cortex. Neural Comput

14: 473–491.

69. Thomas PJ, Cowan JD (2004) Symmetry induced coupling of cortical feature

maps. Phys Rev Lett 92: 188101.

70. Wolf F (2005) Symmetry, multistability and long-range interactions in brain

development. Phys Rev Lett 95: 208701.

71. Wolf F (2005) Symmetry breaking and pattern selection in visual cortical
development. Les houches 2003 lecture notes. Methods and Models in

neurophysics. Amsterdam: Elsevier. 575–639 pp.

72. Kaschube M, Schnabel M, Wolf F (2008) Self-organization and the selection of

pinwheel density in visual cortical development. New J Phys 10: 015009.

73. Bressloff PC, Cowan JD (2002) The visual cortex as a crystal. Physica D 173:

226–258.
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