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Genetic Influence on Quantitative Features of Neocortical
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The layout of functional cortical maps exhibits a high degree of
interindividual variability that may account for individual differ-
ences in sensory and cognitive abilities. By quantitatively as-
sessing the interindividual variability of orientation preference
columns in the primary visual cortex, we demonstrate that
column sizes and shapes as well as a measure of the homo-
" geneity of column sizes across the visual cortex are significantly
clustered in genetically related animals and in the two hemi-

spheres of individual brains. Taking the developmental time-
table of column formation into account, our data indicate a
substantial genetic influence on the developmental specifica-
tion of visual cortical architecture and suggest ways in which
genetic information may influence an individual's visual abilities.
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In most areas of the cerebral cortex, information is processed in
two-dimensional (2D) arrays of functional modules, called corti-
cal columns (LeVay and Nelson, 1991; Creutzfeldt, 1995). Neu-
rons in individual columns are densely connected by local intra-
cortical circuits and share many functional properties (€.g.
stimulus selectivities in sensory cortical areas or movement spec-
ificities in motor cortical areas). In a plane parallel to the cortical
surface, neuronal selectivities vary systematically, so that columns
of similar functional properties form highly organized 2D pat-

terns, known as functional cortical maps. This 2D organization of ~

a cortical area appears closely related to its intrinsic circuitry and
computational capabilities: the organization of intracortical syn-
aptic connections is tightly matched to the exact spatial arrange-
ment of functional columns (Somogyi et al.,, 1998), and improve-
ments of both sensory and motor performance have repeatedly
been linked to learning-induced plasticity of column arrange-
ments (Recanzone, 2000). Many lines of evidence suggest that
during the ontogenetic development of the cerebral cortex, func-
tional maps typically form through activity-dependent refinement
of initially crude patterns of synaptic connections (Stryker, 1991;
Goodman and Shatz, 1993; Singer, 1995; Price and Willshaw,
2000). Therefore, epigenetic factors such as spontaneously gen-
erated patterns of neuronal activity (Weliky and Katz, 1999) or
individual experience (Blakemore and Cooper, 1970; Singer et
al,, 1981; Frégnac and Imbert, 1984; Sengpiel et al,, 1999) are
widely believed to play a decisive role in specifying the precise
layout of functional cortical maps. Recently, however, a series of
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experiments indicated that the initial development of these maps
is much less dependent on experience than previously thought
(Godecke and Bonhoeffer, 1996; Crair et al., 1998; Lowel et al.,’
1998; Crowley and Katz, 2000) and raised the urgency of explor-
ing the largely unknown role of genetic information in functional
cortical development.

To explore the impact of genetic factors on cortical architec-
ture, we therefore analyzed the variability of patterns of orienta-
tion preference columns [OR columns, columns of neurons pref-
erentially responding to visual contours of a particular orientation
(Hubel and Wiesel, 1962)] in the primary visual cortex in genet-
ically related and unrelated animals raised in the same visual
environment. Using this approach, a strong impact of genetic
factors should show up as a reduced variability (i.e., enhanced
similarity of column patterns in genetically related animals com-
pared with the overall interindividual variability within the pop-
ulation). To test for such a reduced variability of column patterns,
we used a newly developed image analysis technique to quantify
the basic properties of the layout of orientation columns in the
primary visual cortex. These analyses revealed that (1) the sizes
and shapes of visual cortical orientation columns exhibit a high
degree of interindividual variability, and (2) column sizes and
shapes as well as a measure of the homogeneity of column sizes
across the visual cortex are significantly clustered in genetically
related animals and in the two hemispheres of individual brains.
Taking the developmental timetable of column formation into
account, these observations indicate a substantial genetic influ-
ence on the developmental specification of visual cortical
architecture. :

MATERIALS AND METHODS :

Animals. We analyzed 2-deoxyglucose (2-DG)-labeled patterns of OR
columns: in the primary visual cortex (area 17) of 31 adult cats (48
hemispheres). OR maps of these animals have been previously published
(Lowel et al,, 1987, 1988; Loéwel and Singer, 1990). Table 1 lists details of
the dataset used in the present analysis. To assess littermate clustering,
data from 22 cats born and raised in the same overall visual environment,
namely the animal house of the Max-Planck-Institut fiir Hirnforschung
(Frankfurt am Main, Germany), were used. The nursing facilities con-
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Table 1. Dataset used for quantitative analysis of OR maps in cat
area 17

Animal Hemispheres. Autoradiographs ~ Stimulus  Age (weeks)
C1-11 Le+Ri 4/4 0° 9.5
C2-L1 Le+Ri 5/2 0° 10
C3-L1 Le+Ri 4/4 o 8
C4-1.2 Le+Ri 3/4 0° 7.5
Cs5-L2 Le+Ri 5/6 90° 8
C6-L3 Le+Ri 5/5 90° 8
C7-L3 Le+Ri 4/4 0° 8
C8-14 Le+Ri 4/4 90° 14.5
C9-14 Ri 4 90° 14.5
C10-L5 Ri 5 0° 12
C11-L5 Ri 4 0° 12
C12-L6 Ri 4 90° 13
C13-L6 Ri 3 90° 13
Ci4 Le+Ri 4/4 90° 10

' CI5 Le+Ri 4/4 90° 8
C16 Le+Ri 4/4 90° 12
C17 Le+Ri 4/4 0° 6
C18 Le-+Ri 5/5 45° 7
C19 Le 4 0° 9.5
C20 Ri 4 90° 10
C21 Le 4 45° 21
Cc22 Ri 4 0° 8
C23 Le+Ri 4/3 135°/0° 13
C24 Le+Ri 4/4 135°/0° 8
C25 Le+Ri 4/4 0° 10
C26 Le+Ri 4/4 0° 9
c27 Ri 4 0° 10.5
C28 Le 4 0° 13
C29 Ri 3 90° 12
C30 Ri 5 90° 12
C31 Ri 3 o0° 12

We analyzed a total of 48 hemispheres from 31 animals (C1-C31), including six
litters (I1-L6). Animals belonging to the same litter are labeled accordingly. Litter
1 (L1) consisted of three animals (C1-L1, C2-L1, and C3-L1); litters 2-6 (L2-16)
consisted of two animals. For every animal, the table lists the hemispheres (Le, left;
Ri, right; Le+Ri, both), the number of 2-DG autoradiographs analyzed, the orien-
tation of the visual stimulus (0° = horizontal, 90° = vertical, 45° = right oblique, and
135° = left oblique), and the age at the time of the experiment. All littermates and
cats C14—C22 were born and raised in the animal house of the Max-Planck-Institut
fiir Himforschung (Frankfurt am Main, Germany). Animals C23-C31 were bought
from the professional animal breeding companies Ivanovas (C23-C28) and Gaukler
(C29-C31), both in Germany.

sisted of two nearly identical rooms with bar cages and tiled floors and
walls. At all times, the crew of the animal house cared for all animals, so
that no particular person was assigned to only a subset of the animals.
Each room contained up to 18 cages, so that animals had visual and other
social contact not only with their littermates and mothers but with all of
the other animals living in the same room as well. All animals in the
colony were mongrels. For impregnation, female cats were given the
opportunity to mate with 2-3 tomcats. Tomcats in the colony were
exchanged regularly. All litters in the sample used in this study were born
and raised by different mothers.

All animals stayed in these rooms until the 2-DG experiments. The
2-DG experiments were performed between January 31, 1984 and Au-
gust 25, 1987 by the same main experimenter (S. Lowel) in the same
laboratory, keeping the visual experience of all animals very similar. The
visual stimuli during the 2-DG experiments were always identical in
spatial and temporal frequency and only differed in orientation, whereby
orientation presentation within the two groups (littermates vs nonlitter-
mates) was rather balanced (sec Table 1): in the littermates, horizontal
contours (0°) were used in 57% of cases (12 of 21), and vertical contours
(90°) were used in 43% of cases (9 of 21); in nonlittermates, 0° were used
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in 44% of cases (12 of 27), 90° were used in 37% of cases (10 of 27), 45°
were used in 11% of cases (3 of 27), and 135° were used in 7% of cases
(2 of 27). The 22 animals raised in Frankfurt included six litters (one
litter of three siblings and five litters of two siblings). In addition, data
from another nine animals, bought from two animal breeding companies
in Germany (Ivanovas, Kisslegg im Allgdu, Germany; Gaukler, Offen-
bach, Germany), were used for the assessment of the overall variability of
parameter values, for the calculation of correlations among various
parameters, and for the calculation of correlations of left and right
hemisphere parameter values.

Image digitization. Photoprints of the 2-DG autoradiographs were
digitized using a flat-bed scanner (OPAL ultra; Linotype-Hell AG,
Eschborn, Germany, operated using Corel Photoshop; Corel, Ottawa,
Ontario, Canada) with an effective spatial resolution of 9.45 pixels/mm
cortex and 256 gray levels per pixel. For every autoradiograph, this
yielded an array of gray values Jo(x), where x is the position within the
area and I, its intensity of labeling.

Region of interest. For every autoradiograph, a region of interest
encompassing the pattern labeled in area 17 was defined by visual
inspection. The 17/18 border was identified based on the larger column
spacing and different pattern layout in area 18 compared with area 17
(Lowel et al., 1987). The manually defined polygon encompassing the
entire 2-DG pattern within area 17 was stored together with every
autoradiograph. Only the pattern within area 17 was used for subsequent
analysis. Regions including artifacts (scratches, folds, and air bubbles)
were excluded from further analysis,

Preprocessing. The digitized patterns were preprocessed to remove
overall variations in the intensity of labeling. To achieve this, the local
average labeling intensity:

Al7

1
was calculated using the kernel K (y) = 5—3 exp (~y?24%) and sub-
X

tracted from the pattern:
1(x) = I(x) = T(x). @)

The spatial width o, of the kernel was determined from the requirement
that structures with a wavelength of <1.5 mm, the range of column sizes,
should not be strongly attenuated by the prepracessing. We used oy = 043
mm, for which the attenuation at wavelengths of <1.5 mm is <20%. This
choice was sufficient to remove overall variations in labeling intensity but
left the column pattern unaffected in all autoradiographs. The pattern I(x)
was then centered and normalized by subtracting its average gray value and
dividing by the SD of gray values, resulting in an array I(x) with:

0= fdzyl(v), ©)

Al7
1= f dyI6))? / J d. *
Al7 Al7

Finally, in artifact regions and regions outside of area 17, the gray values
of the patterns were set to zero, Figure 1 shows representative examples
of original and preprocessed patterns.

Analysis of column layout. For every autoradiograph, 2D maps of local
column spacing and of a measure of domain anisotropy or bandedness
were estimated based on wavelet transforms (Farge, 1992) of I(x):

1(x,00) = f A1) dsai)- ®)
Al7

Here x, 8, are the position, orientation, and scale of the wavelet ¢, 5.,(¥),
and I(x, 6, I) denotes the array of wavelet coefficients. We used
complex-valued Morlet-wavelets defined by a mother wavelet:

I() = jdzyfo(v)K(v =x) / J‘dzyK(y - ), OF
Al7

’
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Figure 1. Preprocessing leaves the essential spa-
tial properties of the 2-DG patterns unaffected. a,
Typical 2-DG pattern. b, Preprocessed 2-DG pat-
tern. ¢, The zero contours of the preprocessed
2-DG pattern ( yellow lines) are superimposed on
the original autoradiograph in a. Note that the
zero contours closely follow the outlines of the
labeled domains.

Plx) = exp< —%xT( é o,(:—z )x) el 6)
and
b=y 07027 ™
cos(8) —sin(0)

with the rotation matrix (6)= sin(6) COSS?)A ) The characteristic

wavelength of a wavelet with scale ! is A, ! with'A, = 2w/|k,|. For large
values of |k}, the wavelets in Equation 6 exhibit a high resolution of
spatial frequencies. For small values of |k,|, they are localized in the
cortical coordinates enabling high spatial resolution. The parameter o,
determines the degree of anisotropy of the wavelets, with larger values
leading to a higher sensitivity for elongated, bandlike structures. There-
fore we used large |k,| wavelets of moderate anisotropy (&, = (7, 0), o,
= 1) to estimate the column spacing and small {k,} wavelets of enhanced
anisotropy (k, = (2, 0), 0, = 15) to calculate the local anisotropy
parameter, With these choices, patterns with large or small columns and
with patchy or bandlike appearance were well discriminated by the
measures described in the following paragraphs.
Spacing. The orientation averaged modulus:

Tes1) = f Do, ®
0

of the wavelet coefficients was used to estimate the local column spacing.
For every position x, the scale:

T(x) = argmax{I(x,1)), &)

maximizing I(x, ) was determined. The corresponding characteristic
wavelength:

Alx) =Ix)A,, (10)

was used as an estimate for the local column spacing at the position x. For
every position (spatial grid size, 0.11 mm), wavelet coefficients for six
orientations 8, € {0, @/6, ..., 57/6} and 12 scales [; (with LA, equally
spaced in 0.5 mm, 2 mm) were calculated. The scale maximizing I(x, /)
was then estimated as the maximum of a polynomial in I fitting the [I(x
1)) for a given position x (least square fit).

Bandedness. The orientation dependence of the wavelet coefficients
was used to calculate a parameter measuring the anisotropy of local
pattern elements (Fig. 2). For a pattern consisting of isotropic patches,
the wavelet coefficients depend only weakly on the orientation @ of the
wavelet. For a pattern consisting of elongated bands, the magnitude of
the wavelet coefficients depends strongly on wavelet orientation and is
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largest if the orientation of the wavelet matches the orientation of the
bands. Using only coefficients at the local wavelength A(x), we therefore

calculated:
s'(x) = f dolf(x,0)[e™ / J delix,0)P, (11)
0 L]

and used the modulus |s(x)| of the local average of this quantity:

s(x) = fd%’s'(x’)K(x’ - x) fd’x'K(x' - x), (12)

Al7 Al7

1 x?
with K(x) = = CXP("Z?) and o = 1.3 <A(x)>, as a local measure of

bandedness. Here <A(x)>, is the average local wavelength. Here and in
the following, (), denotes averaging over all locations in area 17. With
this choice of o, s(x) is sensitive to the occurrence of bandlike regions
that extend at least over the size of a hypercolumn, Wavelet coefficients
for the scale corresponding to the local column spacing and for nine
orientations 6 € {0, 7/9, . . ., 87/9} were calculated for every position and
used to evaluate Equations 11 and 12. Based on the local column spacing,
A(x), and the local bandedness, |s(x)|, the overall layout of the 2-DG
patterns was characterized by four parameters: mean column spacing, A
= A(x),; the SD of local column spacing across area 17, oy = V{Ax) —
A)?),, called spacing inhomogeneity in the following; mean bandedness,
a = {s(x)]),; and the SD of the local anisotropy parameter, o, =

(5] — )P, called shape inhomogeneity in the following.

Accuracy of parameter estimation. To estimate these parameters reli-
ably and precisely, up to six autoradiographs derived from flat-mount
sections at various cortical depths were analyzed for every. brain hemi-
sphere. The parameter values for the spacing parameters A and o, Were
estimated with an average SE of <20 um (Table 2). The dimensionless
shape parameters « and o,, which range between 0.06 and 0.3, were
estimated with an average SE of <0.01 (Table 2). Qualitatively and
quantitatively the results reported were insensitive to variation of the
parameters of the image analysis method such as o, oy, k,, and the
number of used wavelet orientations and scales.

Permutation tests. Because the distributions of parameter values were
not Gaussian, permutation tests were used to assess the statistical signif-
icance of littermate clustering, correlations of parameter values of left
and right hemispheres, and correlations between parametérs. The ap-
proach can be summarized as follows: To assess whether parameter
values in littermates were significantly clustered, we compared the simi-
larity of parameter values among real littermates with the similarity of
parameter values found in randomly chosen sets of animals raised in the
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Figure 2. Analyzing the shape of orientation columns. a, Examples of
wavelets ,, with different orientation 6 superimposed on a stripe-like
region of 2-DG-labeled orientation columns. The real parts of the
complex-valued wavelets are shown. Positive regions are delineated by
white lines; negative regions are delineated by dark lines. The wavelet of
optimal orientation (solid lines) and one example of nonoptimal orienta-
tion (dotted lines) are shown. b, The normalized squared modulus of the
wavelet coefficients:

180

I 7 s do
(6,0 = 18 f lox)1g5:
0

as a function of orientation 6. For a vertically oriented wavelet, 6 = 0°,
180°. ¢, Wavelets i, superimposed on a patchy region of 2-DG-labeled
orientation columns and the respective coefficients (d) (description as in

a and b). Note that for the stripe-like region, IT|? is strongly modulated .

and exhibits a pronounced peak at the wavelet orientation 6 matching the
stripe orientation, This is not the case for the patchy region.

same environment. Statistically, there is significant littermate clustering
if the hypothesis: “Parameter values are independent of an animals’
genetic identity” is rejected (i.e., if the observed degree of similarity is
extremely unlikely to occur by chance). To test this hypothesis, we
calculated a single number [the average distance to the litter mean
(ADLM), see below] that quantifies the similarity of parameter values
among littermates and compared its actual value with the statistical
distribution predicted by the hypothesis that the parameter values are
independent of an animal’s genetic identity.

P values were calculated using 106 randomly generated permutations
of the data. For the analysis of littermate clustering, we calculated the
ADLM AQ for parameter Q € {A, oy, &, 0.} according to:

AQ = 2,|0i — OwliN, (13)
i

where i indexes hemispheres, I(i) is the index of the litter to which
hemisphere i belongs, Q) is the average of parameter values within this
litter, and N is the total number of hemispheres in all litters. Small values
of AQ indicate littermate clustering. If parameter values in genetically
related animals or hemispheres are statistically independent (i.e., genetic
information plays no role in the specification of parameter Q), the
probability to observe an ADLM as small as or smaller than AQ is:

P =(0(AQ - AQ,)),, (14)

where AQ, = EilQp(i) - Q}(p(i»l/N is the ADLM of pseudolitters
generated by a suitable permutation p() of hemisphere indices, O(e) is
the Heaviside function, and (s}, denotes the average over permutations.
p values were calculated using either arbitrary random permutation Pu)
or only such permutations that preserved left-right pairs of hemisphere
indices (P;). Histograms of AQ, values for these two randomization
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schemes are displayed in Figure 10i-1. P values for correlation coeffi-
cients were calculated analogous to the calculation of Py values.

RESULTS

Using a newly developed technique based on wavelet analysis, we
quantified the major layout properties of OR column patterns
obtained by 2-DG autoradiography in the cat primary visual
cortex (area 17) (Lowel et al., 1987, 1988; Lo6wel and Singer, 1990;
Kaschube et al., 2000). In all investigated hemispheres (48 hemi-
spheres from 31 animals), OR columns preferring the same stim-
ulus orientation were arranged in complex repetitive patterns
(Fig. 3a). Individual columns may be widely spaced or closely
spaced and may be shaped isotropically or anisotropically, ap-
pearing as circular patches or as elongated bands (Fig. 3b). For
every pattern, we calculated a 2D map of local column spacing
and a 2D map of local column anisotropy, measuring the aniso-
tropy of column shapes (large values for bandlike patterns, small
values for patchy patterns). Based on these maps, we calculated
four parameters describing the overall spatial organization of the
OR patterns (Fig. 3¢,d): (1) mean column spacing A, (2) SD o5 of
local column spacings across area 17 (spacing inhomogeneity), (3)
mean bandedness o, and (4) SD o, of the local anisotropy
parameter (shape inhomogeneity). Mean column spacing and
bandedness measure whether a pattern predominantly contains
large or small and bandlike or patchy OR columns, respectively;

spacing inhomogeneity and shape inhomogeneity quantify pat-,

tern inhomogeneity across area 17.

Because an enhanced similarity among relatives can only be
detected for parameters that exhibit considerable interindividual
variability, we assessed the variability of these parameters across
the population. As illustrated in Figure 4, all four parameters
fulfill this requirement. Furthermore, patterns judged subjec-
tively as similar exhibited similar parameter values. Figures 5 and
7 show examples of pairs of similar patterns of OR columns
obtained from the two hemispheres of individual brains (Fig. 5)
and from the brains of littermates (Fig. 7). Subjectively dissimilar
patterns also exhibited substantially different parameter values
(see Fig. 9). 2D maps of local column spacing and of local column

. anisotropy are displayed in Figure 6 for the patterns of OR

columns obtained from the two hemispheres of individual brains
in Figure 5 and in Figure 8 for the patterns from littermates
shown in Figure 7. Although the patterns have similar average
parameter values, their 2D parameter maps are not identical.
We subsequently compared the spacing and shape parameters
of OR maps in the two hemispheres of 17 brains (Fig. 10a-4d).
Because the two hemispheres of a brain are genetically identical,
genetically controlled features of visual cortical architecture are
expected to be similar in the two brain hemispheres. Indeed, our
data show similar parameter values in left and right areas 17. For

. mean column spacing, spacing inhomogeneity, and bandedness,

the parameter values of left and right hemispheres displayed
statistically significant correlations (A:r = 0.78, p = 0.0002; o
r= 049, p = 002, o: r = 046, p = 0.03). The observed
interhemispheric correlations are thus consistent with a substan-
tial genetic influence on the developmental specification of visual
cortical OR maps.

Alternatively, the similarity of measured parameters in left and
right visual cortices may reflect the fact that the two hemispheres
of one brain receive visual experiences that are typically more
similar than the experiences of two different animals even if they
are raised in the same environment. However, this ambiguity can
be resolved if the parameter values are also significantly clustered
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Table 2, Accuracy of estimation for the layout parameters mean column spacing (A), spacing inhomogeneity (c,), bandedness (@), and shape
inhomogeneity (a,) using up to six 2-DG autoradiographs obtained from various cortical depths

parameter (P ) Range 2.v:c Ehem AP AP, /zlxem (%)
A 1.0-14 mm 0.03 mm 0.094 mm 0.015 mm 16
[N 0.1-0.2 mm 0.026 mm 0.04 mm 0.013 mm 33
« 0.12-03 0.014 0.042 0,0071 17
Oy 0.05-0.14 0.0086 0.019 0.0043 23

For all four parameters, the table lists the total range of interindividual variation (range), the average SD of parameter values calculated from sections at various cortical depths
(Zsec) the SD of the section-averaged parameter values across different hemispheres (3,,,), the average SE (AP) of the scction-averaged parameter values, and the relative
error AP/S,,,,, as a percentage of the SD across hemispheres. Because 2-DG patterns obtained from different sections of the same cortex are much more similar to one another
than patterns observed in different animals or in the two hemispheres of one brain, 3,,. is substantially smaller than 3,,,,,.

in littermates compared with unrelated animals. In Figure 10e-h,  ment as the littermates. In the littermates, the parameter values
the values of the spacing and shape parameters of OR patterns  cluster, whereby the degree of clustering varies between litters
from six litters are compared with one another and with the  and for different parameters (Fig. 10e-h). For instance, spacings
overall variability among all animals raised in the same environ-  in littermates typically differed by <80 wm, while they may differ
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Figure 3. Layout properties of 2-DG-labeled OR domains in the primary visual cortex (area 17) of cats and their quantification, a, Representative
examples from the analyzed data pool: 2-DG-labeled OR domains appear as dark gray to black patches or stripes on a lighter gray background. The 2-DG
patterns were visualized on cortical flatmount sections and thus contain OR domains within the entire area 17. Anterior is at the top of each figure, and
posterior is at the bottom, lat, Lateral; med, medial. b, Variability of pattern properties. OR domains vary in both the spacing of adjacent domains (fef!
column, small; right column, large) and in the degree of anisotropy of domain shape (top row, band-like; bottom row, patchy). ¢, d, Quantitative analysis
of the spacing (c) and shape (d) of OR columns. ¢, 2D map of local column spacing A(x) (left) of a representative 2-DG pattern (left pattern in a) obtained
by wavelet analysis, coded in grayscale: light gray regions exhibit larger-than-average spacing; dark gray regions exhibit smaller-than-average spacing. In
the histogram of local column spacings (right), the mean column spacing A and the SD o, of local column spacings (spacing inhomogeneity) are marked
by red and blue arrows, respectively. d, Local anisotropy parameter s(x) (yellow bars) superimposed on the analyzed 2-DG pattern (left): The lengths of
the yellow bars are proportional to the measure of local bandedness ﬁ(x)], with long bars indicating bandlike regions and short bars indicating patchy
regions of the pattern, The bars are oriented perpendicular to the calculated local band orientation, The histogram of Js{x)| (right) exhibits a broad peak
with low and high values of Is] corresponding to patchy and bandlike regions in the 2-DG pattern. The mean bandedness « and the SD &, of local
bandedness (shape inhomogeneity) are marked by red and blue arrows, respectively. Scale bars: 4, ¢, d, 10 mm; b, 5 mm.
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Interindividual variability (g, b, d, €) and relative independence (¢, f) of the spacing and shape parameters mean spacing (A; a), spacing

inhomogeneity (os; b), bandedness (&; d), and shape inhomogeneity (o,; €) in 48 hemispheres from 31 animals. Values from individual hemispheres are
indicated by Xs arranged along the x-axis in a, b, d, and e. Error bars show the SEM of the estimated parameter values. Scatter plots of the spacing and
shape parameters are displayed in ¢ and f. Note that the values of all four parameters display significant interindividual variability: Mean column spacings
vary between 1.0 and 1.4 mm () and spacing inhomogeneities (0,) vary between 0.1 and 0.27 mm (b) in different animals, The shape parameters and:
o, exhibit an even larger interindividual variability: Mean bandedness « varies by more than a factor of two between 0.14 for very patchy patterns and
0.3 for patterns largely composed of bands (d). Shape inhomogeneity varies between 0.06 and 0.14 (¢). The dashed—dotted lines in a, b, d, and e mark

the total range of interindividual variability.

by up to 400 m in genetically unrelated animals. To test whether
the observed degree of littermate clustering is sufficient to dem-
onstrate a significant influence of genetic identity on the devel-

opmental specification of these parameters, we calculated the

expected distributions of the ADLM of the parameter values
assuming that parameters are statistically independent of the
genetic identity of a hemisphere. To this end, the original data
were randomized such that genetic relationships (I) among ani-
mals or (II) among all hemispheres were extinguished. For all
four parameters, the actual ADLM values were smaller than the
average value in randomized data, indicating littermate clustering
(Fig. 10i-!). For mean column spacing, spacing inhomogeneity,
and bandedness, littermate clustering was significant under both
assumptions 1 and 2 (Fig. 10/, At Py = 0.0046, Py = 0.00014;
Fig.10j, oa: Py = 0.0028, Py = 0.0005; Fig.10k, e: Py = 0.035;
Py = 0.0023).

To assess whether the observed littermate clustering of OR
patterns may be caused by unspecific genetic factors controlling
the animal’s size or the size of its brain, we calculated the
correlations of all spacing and shape parameters with the animal’s
weight and with the size of area 17. With the exception of a weak
correlation of column spacing and area size (r = 034, p = 0.03),
there were no significant correlations. There were also no signif-
icant correlations between the four parameters and the ages
of the animals or the orientation of the visual stimuli. Our data
therefore do not support the idea that unspecific genetic
or experimental influences are responsible for the clustering
of quantitative features of functional cortical architecture in
littermates.

How does the observed substantial variability in the layout of
visual cortical orientation columns affect visual information pro-
cessing? Because of the retinotopic organization of area 17, each

orientation hypercolumn processes information from a localized
region of visual space. One might therefore imagine that the
spatial resolution with which contour information is analyzed in
area 17 is constrained by the total number of orientation hyper-
columns in this area. This number, in turn, depends on column
spacing and area size and can be estimated by the ratio of area
size A and hypercolumn size A? (there is about one OR column
per area AZ of cortical surface). The size of area 17 varied
between 330 and 575 mm?, and the size of hypercolumns varied
between 1.0 and 1.7 mm? in different hemispheres (Fig. 11a),
demonstrating that both hypercolumn and area size exhibited
pronounced interindividual variability with an approximately
twofold range between smallest and largest values. Because hy-
percolumn and area size were only weakly correlated (r = 0.34;
p = 0.035) (Fig. 11a), the total number of orientation hypercol-
umns also exhibited considerable interindividual variability, rang-
ing between 240 and 410 in different animals (Fig. 11b). Thus cats
exhibit smaller or larger orientation columns mostly regardless of
whether they have a small or a large area 17. Considered individ-
ually, both hypercolumn and area size thus control considerable
fractions of the interindividual variability of hypercolumn num-
ber (Fig. 11 b,c). Together, ‘these observations indicate that ge-
netic control of mean column spacing might effectively mediate a
genetic influence on an animal’s visual ability by controlling the
number of visual cortical hypercolumns. '

DISCUSSION ‘

To our knowledge, our analysis represents the first study that
correlates genetic similarity with quantitative features of func-
tional cortical architecture. Although the similarity of columnar
layouts in the two hemispheres of individual brains has been
noted before for both monkey ocular dominance columns (Hor-
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Figure 5. Examples of the similarity of patterns of 2-DG-labeled orienta-
tion columns in the two hemispheres of individual animals. The patterns of
both the left (g, ) and right (b, @) hemispheres of cats C16 (4, byand C1 (¢,
d) are displayed in a way so that the 17/18 border appears left in all panels
(to this end, the right hemisphere patterns were mirror-inversed) to aid
comparison. Note that the general appearance of the orientation column
patterns (patchiness or bandedness of the pattern, spacing of adjacent
domains, etc.) looks rather similar in the left and right hemispheres of both
animals. Note furthermore that the quantified parameters (column spacing
A and bandedness ) quantitatively reflect this similarity: Column spacing
in the left and right area 17 of cat C16 was 1.05 and 1.09 mm, bandedness
was 0.30 and 0.28, respectively. In cat C1, column spacings in the left and
right area 17 were 1.10 and 1.06 mm; bandedness was 0.23 in both hemi-
spheres. In the illustrated cases, column spacing A differed by only 40 pm
in the left and right hemisphere of individual brains, whereas column
spacing may differ by up to 400 pm among hemispheres from unrelated
animals. Similarly, bandedness a differed by 0.02 at most in the illustrated
hemisphere pairs, whereas this parameter may differ by up to 0.15 among
hemispheres from unrelated animals.

ton and Hocking, 1996) and cat orientation and ocular dominance
columns (L&wel et al., 1988), neither-a detailed quantification of
such observations in a large dataset nor an analysis of similarities
and dissimilarities in genetically related and unrelated animals
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has been performed before. The present results are consistent
with a substantial genetic influence on several parameters of
visual cortical OR maps: mean spacing, spacing inhomogeneity,
and mean bandedness were significantly more similar in the two
hemispheres of individual brains and in related apnimals com-
pared with the overall interindividual variability. The strong
interindividual variability and the similarity of left and right
visual cortical patterns observed here is comparable with the
variability and left-right similarity exhibited by the overall size of
representational areas in the primary somatosensory cortex (Rid-
dle and Purves, 1995) and by functional modules in the olfactory
bulb (Strotmann et al., 2000; Belluscio and Katz, 2001).

Epigenetic influences

Although it is conceivable in principle that the observed cluster-
ing of parameter values of visual cortical OR maps reflects an
influence of shared nongenetic factors, this possibility appears
rather unlikely if the developmental timetable for the formation
of orientation columns is taken into account: axons from the
lateral geniculate nucleus (LGN), providing visual input to visual
cortical neurons, enter the cortex at about the time of birth
(Ghosh and Shatz, 1992), when many cortical neurons are still
migrating to their final positions (Luskin and Shatz, 1985). 1t is
therefore unlikely that shared intrauterine environments of lit-
termates can specifically influence the development of visual
cortical OR maps. Furthermore, after birth, OR maps that exhibit
all of the basic layout features found in adults form regardless of -
whether the animals have normal visual experience (Crair et al,
1998). Finally, although stripe rearing in early postnatal life
increases the proportion of cells preferring the experienced ori-
entation, major changes in OR map layout have not been ob-
served (Blakemore and Cooper, 1970; Singer et al., 1981; Frégnac
and Imbert, 1984; Sengpiel et al., 1999). Together, these studies
indicate that shared experience is very unlikely to be responsible
for the observed similarity of basic layout parameters of OR maps
in genetically related animals.

Comparison with human twin studies

In the context of previous studies of the influence of genetic
factors on morphometric features of the brain, the observation of
significantly similar layouts of visual cortical orientation columns
in related animals comes as a surprise, Although magnetic reso-
nance imaging studies in humans demonstrated a substantial
influence of genetic factors on “gross” morphometric brain mea-
sures such as intracranial volume, total gray or white matter
volume (Baaré et al., 2001), and the overall volume of specifically
chosen brain regions (Tramo et al., 1995, 1998; Pennington et al,,
1999; Thompson et al, 2001), more specific features of brain
morphology, such as sulcal patterns, were surprisingly different
between monozygotic twins and thus did not exhibit a substantial
genetic influence (Steinmetz et al., 1995; Bartley et al., 1997;
Lohmann et al., 1999). These results suggested that the tightness
of genetic control decreases from gross- to fine-grained features
of cortical architecture. However, our present data quantitatively
demonstrate that fine-grained and functionally relevant aspects of
neocortical organization can also be influenced to a significant
degree by genetic information.

Experience dependence

The demonstration of a significant genetic influence on quantita-
tive features of visual cortical organization has important impli-
cations for the study of the impact of experience on cortical
organization. Previously, analyses of the effects of visual experi-
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ence on column layout in.the visual cortex have largely ignored
the animals’ genetic backgrounds. Thus, in the light of our present
findings, genetically induced variability may have been inter-
preted as evidence for experience dependence in previous stud-

ies. For instance, if the spacing of ocular dominance patterns is

subject to a similar degree of genetic influence as that of orien-
tation columns, the observation of Lowel (1994) and Tieman and
Tumosa (1997) that animals raised with strabismus or alternating
monocular exposure exhibit an increased spacing of ocular dom-
inance columns might have been confounded by a genetic dissim-
ilarity between experimental and control groups. In general, the
occurrence of a pronounced interindividual variability together
with a substantial genetic influence on visual cortical organization
emphasize that to obtain unambiguous results with respect to the
impact of experience on cortical organization, experimental and
control groups must be composed of littermates.

Mechanisms of genetic control

The similarity of quantitative parameters of visual cortical OR
maps in littermates strongly suggests the existence of develop-
mental mechanisms that mediate a genetic influence on the layout
of functional cortical maps. However, the available evidence is
insufficient to determine the precise nature of these mechanisms.
Notably, conceivable mechanisms differ considerably in how di-
rectly genetic information might control visual cortical architec-
ture. The most extreme possibility that appears consistent with
the available data is the direct genetic prespecification of the
orientation preferences of individual visual cortical neurons by
some kind of (to be identified) molecular recognition mecha-
nisms. Obviously, such a model can explain our results. Never-
theless, the observed littermate clustering can be explained just as
well by genetic influences on mechanisms for the activity-
dependent selection of cortical circuitry (see below). To identify
the precise mechanism of genetic control, it will be important for
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Figure 6. 2D maps of local column spacing (a b
e, f) and local bandedness (¢, 4, & h) for the
patterns obtained from left-right pairs of hemi-
spheres displayed in Figure 5. The maps are
“arranged as in Figure 5: the maps in g and ¢ were
derived from the pattern in Figure 5a, the maps
in b and d were derived from the pattern in
Figure 5b, the maps in e and g were derived from
the pattern in Figure 5S¢, and the maps infand h_
were derived from the pattern in Figure 5d.

future studies to further characterize the strength and nature of
genetic influences on cortical functional maps. For instance, the
hypothesis of genetic prespecification in detail predicts that maps
in genetically identical animals such as clones or identical twins
should resemble each other in every detail. Consequently, this
hypothesis would be falsified if maps in such animals exhibit
similar parameters, which is predicted by our results, but differ in
the exact arrangement of the columns. More generally, however,
the comparison of maps in genetically identical animals is a priori
incapable of identifying the mechanisms by which genetic infor-
mation influences functional cortical maps (for a detailed discus-
sion, see Miller et al., 1999). Instead, genuinely new paradigms

" will be needed to identify with certainty the mechanisms medi-

ating the genetic control of functional cortical maps (see Specific
versus unspecific genetic factors).

Thus, while our results are in line with recent experiments on
visual cortical development indicating that the initial develop-
ment of cortical maps is largely independent of visual experience
(Godecke and Bonhoeffer, 1996; Crair et al., 1998; Lowel et al.,
1998; Crowley and Katz, 2000), it is important to note that they
are also fully consistent with the hypothesis that the functional
architecture of the visual cortex essentially develops through
activity-dependent mechanisms (Stryker, 1991; Goodman and
Shatz, 1993). Theoretical studies have demonstrated that even if
cortical columns develop exclusively through a self-organization
process driven by individual experience, genetic information may
determine the final pattern layout by controlling cellular param-
eters or boundary and initial conditions (Gierer, 1988, Wolf et al.,
1996; Miller et al., 1999). Various mathematical models for the
activity-dependent formation of column patterns predict that the
spacing of adjacent columns is determined by cellular parameters
such as the width of dendritic or axonal arborizations (Miler,
1995; Swindale, 1996). Shape features of column patterns are
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Figure 7. Examples of the similarity of patterns of 2-DG-labeled orien-
tation columns in littermates. The orientation column patterns of the
related cats C4 and C5 (g, b) and C6 and C7 (¢, d) are displayed such that
the 17/18 border appears left in all panels. Note that the general appear-
ance of the orientation column patterns (patchiness or bandedness of the
pattern, spacing of adjacent domains, etc.) is rather similar in the litter-
mates. Note furthermore that the quantified parameters (column spacing
A and bandedness o) quantitatively reflect this similarity: Column spacing
in the right area 17 of cats C4 and C5 was 1.10 and 1.12 mm, and
bandedness was 0.26 and 0,24, respectively. In the littermate cats C6 and
C7, column spacings in the right area 17 were 1.23 mm for both animals,
and bandedness was 0.24 and 0.23, respectively. As for pairs of left and
right hemispheres from individual animals (Fig. 5), the differences in
parameter values in littermates are very small compared with the overall
interindividual variability (compare Fig. 4).
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influenced by similar parameters (Wolf and Geisel, 1998, 2000).
Genetic determination of the parameters of an activity-
dependent developmental process is therefore sufficient to ex-
plain the observed littermate clustering and left/right brain
similarities. ‘

In addition, it should be noted that our results do not imply that
column patterns in left-right hemisphere pairs or in littermates
are more or less identical or have identical parameter values. In
fact, one would expect even left-right hemisphere pairs that are
genetically identica! to exhibit different parameter values, because
identical parameter values can only result if genetic information is
expressed absolutely symmetrically in the two hemispheres and
nongenetic factors (such as random events in development) do
not play any role. Consistent with this prediction, we indeed find
that some of the parameters of left and right brain hemispheres
differ by more than two estimated SEs and are therefore presum-
ably significantly different.

Specific versus unspecific genetic factors

Although the precise mechanism underlying the observed lit-
termate clustering of orientation column layout is unknown,
our data suggest that genetic factors control at least a consid-
erable fraction of the variability of visual cortical columnar
architecture. These genetic factors may either specifically af-
fect the layout of visual cortical columns (and nothing else) or
unspecifically influence a variety of features of brain organi-
zation including column layout. Because we did not observe
strong correlations between the quantified layout properties
and body weight or the size of area 17, our data indicate that
the observed littermate clustering i§ not caused by factors
unspecifically affecting growth processes throughout the body
or the brain. In particular, because there was only a weak
correlation between column size and area size, our data dem-
onstrate that the total number of orientation columns is con-
trolled by more than one factor. However, it is very possible
that other unspecific factors do play a role in orientation
column layout. For instance, it is conceivable that genetic
factors affecting cellular parameters such as the radius of
dendritic or axonal arborizations contribute to the similarity of
orientation columns in area 17 of littermates. Another possi-
bility is raised by theoretical studies that demonstrated that in
mathematical models of the activity-dependent development
of column patterns, the correlational structure of activity pat-
terns in the LGN affects the spacing of columns (Goodhill,
1993; Scherf et al., 1999; Wolf et al., 2000). Therefore, these
models predict that every factor that affects the structure of
correlations within the LGN may also affect the spacing of
columns in the visual cortex. Candidate factors include the
number of retinal ganglion cells, the time of eye opening, and
the synaptic organization of LGN circuitry. To identify the
relevant factors, future studies will have to analyze how the
variability of functional cortical architecture correlates with a
wide variety of properties at the cellular, circuit, and systems
level.

Genetic contro! of visual abilities

Our observation that the total number of orientation hypercol-
umns in area 17 exhibits a large degree of interindividual vari-
ability raises the question of whether genetic control of cortical
columnar architecture mediates a genetic influence on an animal’s
visual abilities. In this context, it is interesting to note that tracing
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Figure 8 2D maps of local column spacing (4, b,
e, f) and local bandedness (e, d, g h) for the
patterns in littermates displayed in Figure 7. The
maps are arranged as in Figure 7. the maps in a
and ¢ were derived from the pattern in figure 7a,
the maps in b and d were derived from the pattern
in Figure 7b, the maps in e and g were derived
from the pattern in Figure 7c, and the maps in f
and h were derived from the pattern in Figure 7d.

H

: b These results suggest that the number of functional cortical
a . units might indeed be related to the processing capabilities of
-y P an area. In the visual cortex, one can easily imagine that the
7 ; o eT N ) total number of orientation hypercolumns directly affects vi-
' sual function. Each orientation hypercolumn analyzes contour
information from a small region of visual space. With a larger
number of orientation hypercolumns, contour information can
be independently assessed for more and finer-grained regions
of visual space, which might improve the capacity of the visual
system for the processing of complex images. In other words, a
larger number of orientation hypercolumns would lead to a
better “coverage” of contour orientation and retinotopic posi-
tion by the cortical map (Swindale et al., 2000). If visual
performance is indeed affected by the total number of orien-
tation hypercolumns in area 17, then our results would predict
a substantial degree of interindividual variability in those
abilities that are mediated by visual cortical architecture, In
this case, genetic control of mean column spacing could easily
mediate a genetic influence on an animal’s visual ability by
controlling the number of hypercolumns. At present, however,
- . this possibility cannot be assessed, because virtually nothing is
A=109mm.a=030 A= 1.23mm.o=0.23 known about the degree of interindividual variability in visual
abilities that are mediated by visual cortical circuitry or about
ﬁ“lgrtérle t9e:d i)t(arapltzs gg ;he %issci;niliity of orien:atifo?hcolurtr:n patterns @n their genetic control.
a S (ca an . Arrangement O e patterns 1s as 1 . [y set T
Figures 5 and 7. Column spacing) in thi, t%vo cats was 1.(I))9 and 1.123 r:m?, The beha'moral genetics o f hu{lian cognitive abl]_ltles has for
respectively; anisotropy was 0.30 and 0.23, respectively, indicating very decades pointed to a prominent influence of genetic factors on
dissimilar patterns (compare with Figs. 5 and 7). cognitive performance (Bouchard, 1998) and accordingly on the
underlying aspects of brain organization (Thompson et al., 2001).
However, the developmental processes through which genetic
experiments in the human temporal cortex have shown that the  information can influence cortical structure and function, and
left hemisphere specialization for language processing is ac- thereby an individual’s sensory, motor, and cognitive abilities,
companied by a larger number of distinct cortical modules in have remained essentially unknown to date. Our results suggest
the posterior part of Brodmann area 22 (Galuske et al., 2000). that quantitative features of neocortical architecture such as size
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Figure 10. Clustering of parameter values in left and right hemisphere:
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that significant correlations were found for mean column spacing,
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and shape of cortical modules may be key targets of genetic
control.
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