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How can squint change the spacing of ocular dominance columns?
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Abstract — The pattern of ocular dominance columns in primary visual cortex of mammals such as cats and macaque monkeys arises
during development by the activity-dependent refinement of thalamocortical connections. Manipulating visual experience in kittens by
the induction of squint leads to the emergence of ocular dominance columns with a larger size and larger column-to-column spacing
than in normally raised animals. The mechanism underlying this phenomenon is presently unknown. Theory suggests that experience
cannot influence the spacing of columns if the development proceeds through purely Hebbian mechanisms. Here we study a
developmental model in which Hebbian mechanisms are complemented by activity-dependent regulation of the total strength of
afferent synapses converging onto a cortical neurone. We show that this model implies an influence of visual experience on the spacing
of ocular dominance columns and provides a conceptually simple explanation for the emergence of larger sized columns in squinting
animals. Assuming that during development cortical neurones become active in local groups, which we call co-activated cortical
domains (CCDs), ocular dominance segregation is controlled by the size of these groups: (1) Size and spacing of ocular dominance
columns are proportional to the size o of CCDs. (2) There is a critical size ¢* of CCDs such that ocular dominance columns form
if & < a* but do not form spontaneously if ¢ > a*. This critical size of CCDs is determined by the correlation functions of activity
patterns in the two eyes and spe01ﬁes the influence of experience on ocular dominance segregatlon We show that ¢* is larger with
squint than with normal visual experience. Since experimental evidence indicates that the size of CCDs decreases during development,
ocular dominance columns are predicted to form earlier and with a larger spacing in squinters compared to normal animals. © 2000

Editions scientifiques et médicales Elsevier SAS
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1. Introduction

In layer IV of primary visual cortex, afferents
from the left and right eye are segregated into
spatially distinct domains called ocular dominance
columns (ODCs) [30, 48]. Neurones in individual
domains preferentially respond to stimulation of
either the left or the right eye [23, 24]. In the
primary visual cortex of cats, ODCs form a
roughly repetitive pattern [1, 33, 48, 49]. During
development the initially overlapping thalamocor-
tical afferents of the two eyes gradually segregate
into alternating patches between the third and
sixth postnatal week [31, 49]. Functionally, how-
ever, ocular dominance columns can be visualized
already between the second and third postnatal
week [10, 44]. Many lines of evidence indicate that
ocular dominance segregation is driven by activity-
dependent competition for cortical territory be-
tween the geniculocortical afferents serving the
two eyes [9, 20, 52]. At the level of individual
neurones and synapses this competition pre-
sumably results from an activity-dependent refine-
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ment of synaptic connections whereby ‘improper’
connections are removed and ‘appropriate’ con-
nections are elaborated [8, 26, 51]. It was shown
previously that the spacing of ODCs in squinting
cats was significantly larger than in normally
raised animals [32] (figure 1). This dependence of
ODC spacing on visual experience has also been
suggested from model simulations [19] and similar
observations have meanwhile been reported from
cats that were raised with alternating monocular
occlusion [56].

Because a global change in columnar spacing
cannot be easily produced by shifting ocular dom-
inance borders in a pre-existing grid these experi-
mental observations rather indicate that the
initially emerging pattern of ODCs forms sponta-
neously and is not determined by a yet unobserved
pre-pattern.

The actual mechanism by which squint leads to
a larger spacing of ODCs is presently unknown.
Indeed the phenomenon that ODC spacing
changes in response to a manipulation of visual
experience seems to be at odds with a basic princi-
ple governing pattern formation in mathematical
models of visual development. In a large class of
models for the formation of ocular dominance
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patterns, it has been demonstrated mathemati-
cally that the spacing of ODCs is (1) determined
by the range of lateral interactions within the
cortical layer and (2) is independent of the degree
of correlation among afferent activity patterns
from the two eyes [39, 40, 54]. In particular,
Miller has shown that (1) and (2) hold if activity-
dependent rearrangement of synaptic connec-
tions follows a generalized Hebbian rule, ie. is
driven by the correlation of arbitrary functions
of pre- and post-synaptic activity [34]. Because
manipulating visual experience must be assumed
to primarily affect the correlations among afferent
activity patterns, the above observations [32, 56]
appear rather surprising from a theoretical point
of view. For reasons that are either mathemati-
cally or biologically not well understood some
models for the formation of ocular domi-
nance patterns appear to exhibit a dependence of

A

column spacing on afferent activity patterns [4, 13,
19, 47].

In this paper we argue that the observed experi-
ence-dependence of the spacing of ODCs is readily
explicable if the occurrence of ODC segregation is
controlled by the range of intracortical interac-
tions. Our mathematical analysis indicates that the
range of intracortical interactions may not only
determine the spacing of the emerging ODCs but
also control ODC segregation in the sense that
segregation can only occur if this range is below a
threshold value.

Two assumptions appear essential for such a
qualitative dependence of ODC segregation on
intracortical interactions. (Al) Cortical activity
patterns take the shape of locally co-activated
domains. (A2) The total strength of synaptic con-
nections is dynamically regulated by an activity-
dependent mechanism.

Figure 1. Pattern of ODCs in the visual cortex of a normally raised cat (A) and a cat raised with artificially induced squint (B). ODCs
in squinting cats exhibit a larger column-to-column spacing than ODCs in normally raised cats. The pattern was visualized by proline

labelling, Scale bars 10 mm. (Modified from [32]).
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In order to investigate how a changing range of
intracortical interactions influences the segrega-
tion of afferent connections, we analysed a simple
phenomenological model equation for ODC de-
velopment which idealizes assumptions (Al) and
(A2). In the following, we will first discuss the
behaviour of this model assuming that the cortical
response to an afferent activity pattern consists of
a single co-activated domain. We will then show
that the basic properties of this simple model
persist when cortical activity patterns are a gen-
eral nonlinear functional of afferent input. Our
results demonstrate that the size ¢ of CCDs is a
decisive parameter in the considered model. We
show that under a wide range of conditions there
exists a critical size ¢* of CCDs such that ODCs
can only form if ¢ is smaller than o*. Further-
more, if ODCs do form their spacing is propor-
tional to o. Since evidence suggests that the size
of CCDs decreases during development [2, 6, 12,
14, 17, 53], this implies that (1) ODCs arise by a
symmetry breaking bifurcation that takes place as
o decreases below the critical value o* (see also
[21]) and (2) the spacing of ODCs is proportional
to the size of CCDs when symmetry is broken.
We show that the critical size o* depends on the
correlations between activity patterns in the two
eyes and should be larger in squinting compared
to normally raised animals. This dependency of
the bifurcation threshold on afferent activity pat-
terns yields a conceptually simple and experimen-
tally testable mechanism for the development of
larger sized columns in squinters.

ODCs are predicted to form earlier in squinting
animals, i.e. at a time when co-activated domains
are still of a larger size. As a consequence they
exhibit a larger spacing in these animals. This
should however only be the case if squint is in-
duced before the emergence of ODCs. Ways to
experimentally test the validity of the proposed
mechanism are suggested.

2. The model

It is convenient to discuss the formation of the
pattern of ODCs during development in terms of
an abstract order parameter field o(x) where x
denotes the location within the cortical layer and
the regions defined by o(x) >0 and o(x) <0 rep-
resent the left and right eye columns respectively
[54].

Here and in the following, bold characters rep-
resent 2-dimensional vectors that denote positions

in a cortical layer and LGN layers representing
the two eyes. Our primary aim is the dynamics of
o(x) which governs the emergence of the pattern
of ODCs from a homogeneous initial state, and in
particular its dependence on parameters describ-
ing visual experience. Such a dynamics is derived
from a dynamics of synaptic strengths which
models basic learning mechanisms. In the follow-
ing we will first construct a simple, phenomeno-
logical synaptic dynamics which is driven by
Hebbian modifications and through which the to-
tal strength of synapses onto a cortical neurone is
stabilized by an activity-dependent dynamic pro-
cess. Using a set of idealizing assumptions on the
shape of cortical activity patterns we will then
derive a dynamics for the order parameter field
o(X).

In a stabilized Hebbian dynamics, the elemen-
tary learning rule for the synaptic strength W(r,x)
that link a neurone at location r in a model LGN
layer to a neurone at location x in the model
cortex is composed of a Hebbian term modelling
how synaptic strengths change as a function of
correlated pre- and post-synaptic activity and
non-Hebbian terms which ensure that a measure
of total synaptic strength is conserved. Since all
variants of Hebbian rules suffer from the same
fundamental instability problem we restrict our
attention to the most simple term given by

SW(Ex) ocla®e®) —f(WEx),e(x)] (D)

where SW(r,x) is the modification of synaptic
strength induced by an afferent activity pattern
a(r) and e(x), the activity pattern that forms as a
response to a(r) in the cortical target layer. It is
easy to see that the first term considered in isola-
tion is unstable. Since the activities a(r) and e(x)
are both positive, synaptic strength can only in-
crease through the first term and in general will
diverge as time proceeds. This implies that addi-
tional influences must exist which stabilize the
synaptic dynamics. In Eq. (1) we assumed that
these influences are synaptically local, i.e. for ev-
ery individual synaptic connection the stabilizing
component f(') depends only on the present
strength of the synapse W(r,x) and on the post-
synaptic activity of the cortical neurone under
consideration e(x).

If W(r,x) changes slowly through the cumula-
tive effect of a large number of activity patterns
its temporal evolution follows the dynamics

2 W) = (a@e() —[VER)) Q)
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where ¢ denotes time and { ) represents the aver-
age over an ensemble of afferent activity patterns.
The most simple dynamics of the form (2) that
dynamically leads to the conservation of total
synaptic strength is identified by expanding
S(W(rx),e(x)) in a power series

SV (r,x),e(x))

=Jo+ ST WEX) + 100 + T WERe) + ®
3

and asking which of the successively more compli-
cated terms is sufficient to stabilize the synaptic
dynamics. It is easy to convince oneself that the
first three terms cannot stabilize the dynamics. The
forth term however is in itself sufficient to stabilize
Eq. (1) and leads to a dynamic regulation of the
total synaptic strength. Firstly, with

JW(ex),e(x)) =137 WX Xe(x) @

the synaptic strength W(r,x) cannot leave the re-
gion defined by

0 < WE,X) < ap.JfYe %)

where a,,, is the maximal activity value in the
ensemble of afferent activity patterns. Secondly,
the total afferent synaptic strength converging
onto a cortical neurone

Wior(X) = fd rW(r,x) - (®

develops according to the equation

2 00 = <de:~ a@e(x) —fé""e(X)wm,(X)> ™

and therefore converges towards

<e (x)szr a(r)>
L S 8
GRED) ®
when the dynamics (2) settles into a stationary
state. Assuming the total afferent activity | d°r a(r)
to be constant in the ensemble of afferent activity
patterns, Eq. (8) implies that the total synaptic
strength converges to the same value | d°r a(r)/f5"*
for every cortical neurone. Even if afferent activity
patterns differ in their total activity w,,(x) will in
general assume a well defined equilibrium value for
every cortical neurone.

The most simple stabilized Hebbian dynamics
therefore takes the form

a% W(r,x) = {a(®e(x) — W{,x)e(x)) ©)

WiodX) =

where 7 is set to unity without lose of generality.

Eq. (9) represents a generalization of models previ-
ously called competitive-Hebbian models (see [15,
55]). The dynamic normalization of total synaptic
strength in such models was first pointed out by
Ritter and Schulten [45].

In order to model ocular dominance segregation
we must consider connections W, (r;,x) and
Wr(rg,X) from the left and right eye LGN layers
respectively. The order parameter o(x) describing
the pattern of ocular dominance columns can be
defined in terms of these connections as

0(x) = j PrW, () — WaEx)  (10)

where a common co-ordinate system in the two
LGN layers is assumed. Eq. (9) then implies a
dynamics for the field o(x) itself

2ot =(( [ s~ anon -
[armen - waewn Jew)
= (s~ 0(Ne(x)) an

where the activity patterns a;(r) and ag(r) in the
left and right eye LGN layers define a formal
ocular dominance stimulus s = | d?r(a, (r)—ag(r)).

To complete the definition of the model we must
finally specify the cortical activity pattern e(x) in
response to an individual afferent stimulus. Here
we assume that the activity pattern e(x) is domi-
nantly shaped by interactions within the cortical
layer. If neighbouring units in the cortical layer are
linked such that excitation spreads locally within
the layer then cortical activity patterns will be
composed of local domains of co-activated
neurones.

As a mathematical idealization of this behaviour
we assume, following Kohonen [29], that the corti-
cal activity pattern is given by a stereotyped activ-
ity blob

202

where x* is the position of the most activated
neurone x* and ¢ measures the size of a CCD.
Given this idealization, afferent stimuli determine
only the position x* of the CCD but not its shape
and size. The location of the CCD is therefore a
functional of the stimulus and of the present
synaptic strengths

x* =x*(a,(),az (), W, (), Wr() (13)

e(x) = 51; exp( - |x—_x-*f> (12)




F. Wolf et al. / Journal of Physiology 94 (2000) 525-537 529

Assuming a single activated domain, like in Eq.
(12) is justified if we restrict the afferent activity
patterns a,(r),az(r) to be localized. The activity
centre x* will then be located in the vicinity of the
cortical position, which corresponds to the centre

fdzr r(a,(0) + ap()
r, = (14)
fd *r(ag(n) + ap ()

of the afferent stimulus. 1n the following we as-
sume that the retinotopic organization is isotopic,
homogeneous, and identical, i.e. that

R.(x) =Rp(x) =x 1s)

with R,(x) = [ drW(r,x) (i=L,R) denoting the
receptive field centre positions.

In order to keep the model simple our aim is to
identify a plausible choice of x*(a;("),az("),0(*)
that leads to a closed form of the dynamics (11)
and is capable of describing the development of a
pattern of ODCs. We consider an ensemble of
stimuli with variable parameters s localized at
variable locations r, in the LGN layers, With the
most simple choice x* =r, the dynamics (11) re-
duces to

%0(x)=<s>—o(x) (16)

and a pattern of ODCs cannot form. In general,
however, the emerging pattern of ODC will mod-
ify the position of the activity centre x*, A general-
ization of x* =r, is given by

x* = argmin(ls —o () + |r — x?) a7

through which the activity centre x* is shifted
towards the neighbouring column dominated by
the eye which is currently more active.

The model defined by Eqgs. (11), (12) and (17)
has a homogeneous stationary solution

0y(x) = {s) (18)

which in the presence of left-right eye symmetry
reduces to 0,(X) =0.

In the following we will show that the stability
of this solution depends on the statistical structure
of the afferent activity-patterns and on the size ¢
of CCDs.

3. Dynamics of ocular dominance segregation

To understand the mechanism of ocular domi-
nance segregation the primary question is whether

the homogeneous solution identified above is sta-
ble or unstable against spatially periodic perturba-
tions. In the later case, ODCs will in general arise
spontaneously from homogeneous initial condi-
tions. To determine this stability we linearize the
dynamics of o(x) around the homogeneous solu-
tion. Because the resulting linear equation must be
translation invariant in the cortical layer its eigen-
functions are plane waves. It therefore suffices to
study the stability of the model in 1 spatial
dimension

0(\) = <(S — 0(\))exp< B%;’O())l_>>

(19)
-L J dsdrP(s,r)(s — o(x)) %
exp(‘%) (20)

where P(s,r) is the probability density of stimuli.
For simplicity we further assume P(s,;) to be
independent of position P(s,r) = P(s). To elimi-
nate the implicit dependence of the activity centre
x* on the stimulus parameters and o(x) we per-
form a change of co-ordinates to new state depen-
dent stimulus co-ordinates y,p defined by

Ld @1

"(P,y)=J’+W
_ . P
)= Siteo)

where o, (y) = (8/0x)o(x)|,. As a function of the
new stimulus co-ordinates p and y the activity
centre is located at x* =y, The stimulus co-ordi-
nate system (21,22) defines a unique reparameteri-
zation of (s,r) for [s—<{sD| < Pmax cc max(820(x)) ~ L.
Because the probability density of s must have
finite support there is always a non-zero amplitude
max(o(x)) up to which the co-ordinates p,y sample
the stimulus set completely and uniquely. The
dynamics close to the homogeneous stationary
state, i.e. for o(x) a5 can therefore be written as

22

%o(x)
= 21_7: J dydpP (p,y)J (9,0.(1),0,. 0N (P.p) — 0(x))

‘ exp(_———""z“o J |2> | (23)

where




530 F. Wolf et al. / Journal of Physiology 94 (2000) 525-537

J(P,O.\-()’)ﬁxx()’)) = (1 + 0.\'(}’)2) X
PO () }
0, (' + 1o, (y)»)?

[Ox()’) 1+ 1o, (y)?

(24)
with 0, (y) = (0%/0x?)o(x)|, is the Jacobian of the
co-ordinate transform defined above and P(p,y) =
P(s(p,y)). The right hand side of the integro-differ-
ential Eq. (13) can be linearized by linearizing the
integrand and yields

d
b—té(x) = —o26(x) +

[N — y|2>
7 J‘dyo.\‘x(y)exp< - 27[0'2 (25)

after performing the p integration. Here 6(x) =
o(x)—{s> and

P ==L (6
The growth rates of 6(x), i.e. the eigenvalues of
the rhs operator

k)= < -1+ <p2>/€26Xp< — k2202>>02 27N

are found by Fourier transformation. The maxi-
mal eigenvalue belongs to

K = /2] (28)

and is positive for

o<o¥=

2{p?)
e (29)

(figure 2). As a consequence, the homogeneous
solution o0y(x) looses stability when the size of
CCDs is below the threshold value o*. This leads
to the emergence of an ocular dominance pattern
with characteristic wavelength

A=./2rc (30)

One should note that according to this result the
same microscopic rules of synaptic plasticity can
either lead to the-emergence of ODCs or suppress
ocular dominance segregation depending on the
size of CCDs.

4, Experience-dependence of ODC spacing

The above analysis shows that different afferent
patterns of activity can influence the emergence of
ODCs only through the instability threshold o* =
/2{p*)[e. Once o* is given the dynamics of ocu-
lar dominance segregation from a homogeneous

0'5 T T T

A (k) ]

-1.5 ) L 1 1 L 1

Figure 2. Spectrum of growth rates A(k) for (p?)=1 and
d=1.050%, o*, 0.95 o* from bottom to top. For ¢ larger than
o* the largest growth rate is positive which leads to the
emergence of a finite wavelength pattern.

initial state is defined. To show that this influence
can in fact explain the observed wavelength change
we rewrite the instability threshold in terms of the
correlation functions

C = <aL(r)aL(r + Q)> - <aL(1')>2
Cr(q) = <aR(r)aR(r + ‘D> - <aR(r)>2
Cprr(@) = {a,(Maz(r + Q) — {ag()){ag®)) (31)

Here we assume that the ensemble of activity
patterns in both eyes is statistically translation
invariant. The expression for the instability
threshold follows from the identity

(?) = <(fd2raL<r> (a0 -
(1) — (an (r)>>)2>

- <( j dPra, @) — <aL<r)>2)> +
< szz-aﬂ(r) - <aR<r>>2>> -

z<<jd2raL<r> - <aL<r>>)
fdzi‘aR(r) - <aR<r>>>>

_ szzleq@L(r)aL(q» ~(a @)+
J rdPq (an®ar@) — {ar®) —
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o [riraca,aa@) st an))

_ fdzch@ + Cal@) — 2C1a(@)

where the area of the LGN layers is | d% = 1. This
identity determines the instability threshold

oF = \/% fdzch(q) + Cr(Q) — 2C (9 (32)

as a functional of the correlation functions of
afferent activity patterns.

Squint reduces correlations between activity in
the two eyes (C¥r < C¥F™) but leaves the correla-
tions within an eye similar to normal vision.
Because

szqCL(® + Cr(@>0 (33)

and inter-eye correlations are presumably positive
[40] the instability threshold will in general be
larger in squinters

G4

compared to normal animals. In contrast monocu-
lar deprivation reduces not only the inter-eye cor-
relations but also the activity and as a consequence
the correlations in the deprived eye. Therefore

* *
Osq > O pom

O—,skq > a;kv!D (35)

while the ordering of o%,, and o, depends on
details of the correlation functions and no general
statements can be made.

If we suppose that the size of CCDs decreases
from a value initially larger than o}, during
development it is easy to see that the dependence
of the instability threshold on inter-eye correla-
tions leads to larger columns in squinting animals.
In this case, o will reach the threshold o > o3,
earlier in squinters than in normal animals. Be-
cause the wavelength A is proportional to ¢ when
the homogeneous solution becomes unstable this
will in turn cause the emergence of ODCs with a
larger spacing (figure 3).

5. General conditions for the existence of o*

The previous analysis rests upon a set of idealiz-
ing assumptions: (1) At any time there is only one
active domain within the cortical layer. (2) The
shape and size of the cortical activity patterns is
rigidly stereotyped. (3) Afferent activity patterns
are localized in LGN layers. (4) The position of

the CCD is determined by a simple rule neglecting
most details of the present synaptic organization.
These assumptions enable a complete analytical
treatment of the model. However, one expects that
our central findings — the existence of o* and its
dependence of afferent correlations — characterize
the behaviour of a large class of models.

In this section we will analyse the existence of a
critical size of CCDs under more general assump-
tions. In particular we will show that a critical size
o* exists and depends on afferent correlations in a
similar manner as in the simple model studied
above as long as the area of cortex that is acti-
vated on average decreases sufficiently fast when
the range of intracortical interactions is decreased.
We will consider only the case of statistically
equivalent patterns of activity from the two eyes,
i.e. (s> =0 and Cr(q) = Cr(q). These results can
be easily generalized to the asymmetric case at the
cost of notational complexity.

In order to discuss the segregation of ODCs for
a synaptic dynamics of the general form Eq. (9),
we consider the dynamics for the difference be-
tween the strength of synapses from the left and
right eye

W2(r,x) = W, (,x) — Wp(r,x) (36)

This dynamics is given by

55; W2(r,x) = {aPe(x) — W P(r,x)e(x)) (37

G(t)

Q
N

=5} €z t

Figure 3. Relation between visual experience, developmental
timing, and pattern wave-length in ocular dominance segrega-
tion. Solid line size of co-activated domains as a function of
time during development (schematic). Dashed and dash-dotted
lines mark the level of o¥% and o}, and the corresponding
points in time at which the segregation of ODCs starts respec-
tively. If o decreases during development the critical size o*
determines timing and wavelength of ocular dominance segre-
gation. A larger value of ¢* with squint then leads to an earlier
segregation of larger spaced columns.
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where

ap@) = a,(r) — ax(¥) (38)

is the difference between the afferent activity pat-
terns from the left and right eye. We are interested
in the linearized dynamics of W2(r,x) in the vicin-
ity of WP(rx)=0 and for W, (1,x) & We(r,X)
close to a stationary solution W *(r,x) of Eq. .
The stability of this solution is determined by the
linearized dynamics of W °(r,x). It takes the form

g; WPrx)= — {e(X) )W @Ex) +

Jd"ydzsCD(s —DIy—x)W?sy) (39

where
CP’s—1r)=Cr(s—1)— Cor(s—1) (40)

is defined by the correlation functions of afferent
activity patterns and I(y—x) describes interactions
among adjacent columns. The first term of the rhs
in Eq. (39) is derived from the respective term in
Eq. (37) by linearizing of e(x) in WP(sy) and
averaging over afferent activity patterns. Itis a
special case of a more general expression derived
in [34]. The second term follows directly from Eq.
(37). Again, Eq. (39) implies a simple dynamics for
the ocular dominance field o(x) = [ d*rWP(r,x)

%o(x) = —{e(x))o(x) + CDJCIZJ)I(Y —x)o(y)
@1

where
= JaﬂsCD(s —r) (42)

is independent of the co-ordinate r by translation
invariance. Eq. (25) is a special case of equation
Eq. (41) because ¢ = (p?)/2 and e(x)) =
According to Eq. (41), the dynamics of o(x)
depends critically on ¢”. Since <{e(x)> > 0 there is
always a critical value ¢*” such that o(x) =0 is
stable for ¢? <c*? if the Fourjer transform of
I(y—x) is bounded from above and exhibits a
positive maximum value. Biologically, this means
that if correlations among activity patterns from
the two eyes are increased beyond a certain
threshold then ODCs cannot form or — when
initially present — should desegregated with time.
To access how ocular dominance segregation
depends on the range of intracortical interactions,
we denote the range of intracortical interactions
shaping the cortical response e(x) by o as in the

simple example analysed above. If e(x)=e’(x)
depends on o then also the cortical interaction
function I(y—x) = [?(y—x) and the average cortical
activity {e“(x)) = (o) must depend on this
parameter, Whether a critical range of intracortical
interactions o* exists is determined by the qualita-
tive nature of this dependency.

Lets denote the maximum of the Fourier trans-
form of I¢(y—x) by (o). The maximal growth rate
of the rhs of Eq. (41) then equals

/lmax =cPa (U) - ‘y(a) (43)

If $(0) = y(o)/a(c) is an increasing function of
o and there is a ¢* satisfying §(c*) = c¢” segrega-
tion will only occur if ¢ <o¢*. Furthermore the
value of o* then increases when c? is increased
and therefore should be larger in squinters com-
pared to normally raised animals.

It is easy to see that these conditions are typi-
cally fulfilled if cortical activity patterns are com-
posed of locally co-activated domains shaped by
intracortical interactions. First, consider the case
of the model Egs. (11), (12) and (17). In this case
a(c) o o® and y(o) oc ag®, As a consequence P(a*)
increases unbounded and o* oc \/c” depends on
between eye correlations. If we assume a(c)oca®
then o* will exists in general if the average cortical
activity y(g) increases with increasing o. In the
model Egs. (11), (12) and (17) this is fulfilled
because the average cortical activity is propor-
tional to the area of cortex activated by each
stimulus. y(o) will in general increase with o if the
average cortical activity is proportional to the
average area of cortex activated and if this area
increases with increasing o. If intracortical interac-
tions shape cortical activity patterns into the form
of locally co-activated domains this will typically
occur if the dimensions of the domains are propor-
tional to the range of intracortical interactions.
Hence o* will typically exist and depend on ¢” if
(o) depends only weakly on o.

In order to complete the argument we must
therefore show that a weak dependence of o(c) on
o is expected in general and not a special feature
of the model Egs. (11), (12) and (17). To this end
it is useful to revisit Miller’s derivation [34] of the
Hebbian term in Eq. (39). This term is obtained by
linearizing the cortical response e’(x) in WP(s,y).
Assuming that the cortical response is a unique
and differentiable functional

e”(x) = N’[x|i(¥)] (44)

of the pattern of afferent input
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i(y) = fd 25a, YW L(Y,8) + ap(s) Wi (y,s) (43)
this yields
e”(x) = N°[x|io(y)] +

deJ*La(z)(x,y = X)) — L) + ...

= N[x[io(y)]+
JdZy 7%y —X) JrfPsaD(s>WD<s,y)+...
(46)
where
io(y) = % JdZS(aL(S) + ag(WL(s,Y) + Wr(s,y)
“47n

is the pattern of afferent input if W .(s,y)=
Wr(s,y) and i(y)—i,(y) is the deviation from this
pattern resulting from Wp(s,y) #0. The second
term in the expansion Eq. (46) represents a gen-
eral, space-variant, linear operator which depends
itself on the symmetrized input iy(y). Approximat-
ing e“(x) in {a(r)e’(x)> by the first two terms in
the expansion Eq. (46) one finds

(a@®e’(x)) =~

%<szsd2ya‘D(r)aD(s)L;’O XY —X) WD(s,y)>
(48)

If a®(r) and a5(r) = a (¥) + a,(r) are statistically
independent this reduces to the first term in the rhs
of Eq. (39) where

Iy =X =5(Ligxy —0)  @9)

Eq. (49) determines the dependence of I(y—x) on
o, the range of intracortical interactions, given the
mapping of afferent inputs i(y) onto cortical activ-
ity patterns and the statistics of symmetrized pat-
terns of input #y(z). In order to analyse this
dependence we must specify what it means to
change only the range of intracortical interactions
while leaving all other aspects of the intracortical
propagation of activity unaltered. We define such
a change of the cortical response by the require-
ment that when the range of intracortical interac-
tions is changed from ¢, to o, then the new
response to an arbitrary pattern of inputs should
resemble the former response to the spatially
rescaled pattern of inputs, More precisely we
require

N 2iy) [= Nl 60

which ensures in particular that changing the
range of interactions leaves the dynamic range of
cortical responses unaffected. The expansion Eq.
(46) can fulfill this requirement in general if and
only if

1 Xy—Xx
L;’O(Z)(x,y —X) = ;; Lf‘ro(z/a)< . ) 1))

)
g

which implies that I7(y~x) satisfies

- 11 Xy—X
Fy-x=; ;;<L}0(z/ﬂ)<;’_r>> (52)

Eq. (52) determines the behavior of «(¢). First,
let us assume that symmetrized, afferent input
patterns that are spatially scaled versions of one
another have equal probability density. Then the
interaction function satisfies

1 _
Iy —x) =_,1(u> (53)

, o, o

and its Fourier transform fulfills
I (k)= Ii Y(ck) 54

ie. a{o)oc o In general (o) may exhibit a non-
trivial dependence on the range of intracortical
interactions. However, Eq. (52) still implies that
for a large class of ensembles of afferent activity
patterns for which the probability density of input
patterns weakly depends on their spatial scale « (o)
will only weakly depend on o. ,
We therefore conclude that the existence of a
critical range of intracortical interactions ¢* and
its dependence on correlations between afferent
activity patterns found in the model Egs. (11), (12)
and (17) is representative for ‘a large class of
models. The critical dependence of ODC segrega-
tion on the range of intracortical interactions basi-
cally reflects that the strength of Hebbian and
non-Hebbian synaptic modifications will in general
scale differently with the range of intracortical
interactions,

6. Discussion and conclusions

We have analysed a model for the emergence of
patterns of ODCs during development of the pri-
mary visual cortex. In this model, the dynamics of
ocular dominance segregation is controlled by the
size ¢ of CCDs. If this quantity is larger than a
critical value ODCs do not form. The occurrence
of a critical size of CCDs reflects the interplay of
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Hebbian and non-Hebbian, activity-dependent
synaptic modifications which induce the preserva-
tion of the total synaptic strength onto a given
cortical neurone and is characteristic for a large
class of such models. The critical size of CCDs
itself depends on parameters of visual experience
and is predicted to be larger with squint than with
normal visual experience. This dependence implies
the emergence of larger spaced columns in squin-
ters compared to normally raised cats, if the size of
CCDs decreases during development.

The critical dependence of the model on the size
of CCDs has a simple intuitive interpretation. The
existence of a critical size of CCDs derives from
the fact that in activity-dependent development,
lateral co-operation has a homogenizing influence
on single neurone selectivities. Because a single cell
is forced to develop similar specificities as the cells
within the range of a typical CCD, domains of a
large size make it harder for an individual neurone
to specialize in detecting any particular stimulus
feature. If one considers an extreme situation in
which CCDs are so large that either the whole
visual cortex is homogeneously active or inactive
ODCs cannot form.

Our quantitative theory shows that the transi-
tion to a situation in which columns do form is not
gradual but occurs at a discrete instability at a
critical size of CCDs. The critical size of CCDs
measures the strength of the tendency of individual
neurones to specialize in processing information
from only one eye, by the minimal range of co-op-
erative interactions that is sufficient to keep any
individual neurone from breaking the symmetry
between left and right eye inputs. Since with squint
the tendency of individual neurones to specialize in
processing information from only one eye must be
much stronger than under normal conditions only
a stronger homogenizing force, i.e. a larger range
co-operative interaction, is capable of keeping any
individual neurone from specializing in a single
eye. Hence o* is larger with squint.

Our analysis demonstrates that this qualitative
behaviour is to be expected as long as cortical
activity patterns are strongly shaped by intracorti-
cal interactions. A discrete instability of the kind
that underlies the present theory was first studied
by Ritter and Schulten [46] for an abstract map-
ping between spaces of different dimensionalities
(see also [42]). The spatio-temporal continuous
stability analysis employed in the present study
was developed previously [58, 47] and generalizes
and simplifies the stochastic approach used in [46].

It gives results that are valid independently of
the particular ensemble of stimuli and enables to
calculate the instability threshold as a function of
afferent correlations. Bauer and coworkers re-
cently explored a complementary method to char-
acterize the behaviour of models for the formation
of column patterns {3, 4]. Their results also indi-
cated that discrete instabilities are ubiquitous in
models of neural pattern formation.

Presently, there is only indirect experimental
evidence on the nature of cortical activity patterns
during development. Nevertheless, it is likely that
activity patterns in the developing visual cortex
take the shape of locally co-activated domains. It
has been established that during development cor-
tical neurones form a dense network of lateral
connections early on. The developing cortical net-
work initially appears to be linked electrically and
chemically through gap junctions [25]. Later, inter-
actions are increasingly mediated by chemical
synapses whereby the development of excitatory
connections precedes the development of in-
hibitory connections [17, 53]. Furthermore, Katz et
al. have shown in a slice preparation that at the
time of eye opening focal activation of cortical
neurones initiates a lateral spreading of activity
over distances of several hundred pum [41]. All of
this is consistent with the assumption that neu-
rones in the developing visual cortex are typically
not activated in isolation but participate in the
concurrent activity of locally defined groups. Pre-
liminary evidence that this might indeed be the
case comes from a recent analysis of spontaneous
activity in the developing primary visual cortex in
ferrets: Chiu and Weliky [7] were able to demon-
strate that patterns of correlated activity are
present before the formation of cortical maps and
that their centre to centre spacing is in the order of
1 mm.

Furthermore, several independent lines of evi-
dence indicate that the size of CCDs decreases
during development. For instance, the experiments
of Katz et al. indicate that the range over which
activation spreads within developing cortical cir-
cuits decreases after the time of eye opening [12].
In kitten visual cortex, the receptive field sizes of
neurones decrease during the first weeks of life [6,
14]. Because in retinotopically organized areas,
receptive field size and the size of CCDs are pro-
portional to each other this suggests that o de-
creases during development. Second, the range of
local intracortical connections linking a neurone to
cells in its immediate vicinity (in contrast to long-
range intracortical connections) also appears to
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decrease during development [12]. Because these
connections probably mediate a lateral spreading
of activity within cortex, decreasing their range
should lead to a decreasing size of CCDs. Third,
inhibitory intracortical interactions mature later
than excitatory interactions [17, 53]. Because in-
hibitory interactions rather lead to more localized
activity patterns this observation is also compat-
ible with the assumption that o effectively de-
creases during development. Fourth, in area 17 of
cat visual cortex, the range of thalamocortical
axon arborizations significantly decreases during
the first few weeks of development [2]. This may
also contribute to a decreasing size of CCDs. In
this respect, it is a very interesting observation that
area 18 in which geniculocortical axon arbours
expand (rather than decrease) during development
[16] does not exhibit a different spacing of ODCs
in squinting compared to normal cats [32]. Since
the decrease of cortical receptive field size, the
range of local intracortical interaction, and the
extend of thalamocortical axon arborizations
probably all derive from an activity-dependent
refinement of connections within the cortex [26]
our theory suggests that the refinement of cortical
circuitry itself drives the network through the col-
lective instability analysed in the previous sections.

Concerning the mechanisms which regulate the
total synaptic strength of afferent connections in
the developing cortex experimental evidence is also
sparse. Theoretically, it has long been noted that
purely Hebbian rules of synaptic plasticity are
intrinsically unstable and in mathematical models
typically lead to an unbounded growth of synaptic
strengths [5, 37, 38]. A variety of mechanisms has
been proposed to stabilize the synaptic dynamics
by additional non-Hebbian components (reviewed
in [35, 37]). In the developing cortex, one attractive
possibility is that a competition of afferent axons
for cortically released trophic factors constrains
the total strength of afferent connections (see [43]).
Another interesting proposal states that a sliding
threshold level of activity determines whether
synapses undergo long-term potentiation (LTP) or
long-term depression (LTD). If this threshold is
itself regulated by the past history of activity such
a mechanism can in principle stabilize the total
synaptic strength [5, 37]. As a third possibility the
dependence of LTD- and LTP-induction on the
precise timing of pre- and post-synaptic spike ac-
tivity may lead to an emergent stabilization of
total synaptic strength [27, 50]. However, the exact
nature of the interactions which stabilize synaptic
strength in the developing visual cortex has still to

be identified and it seems likely that the biological
system relies on a multiplicity of functionally re-
dundant processes. We have therefore not at-
tempted to model a particular mechanism for
synaptic stabilization in detail.

Contrasting the observation that a Dbasic
parameter of visual cortical organization, the spac-
ing of ODCs, depends on visual experience, a
series of recent experimental observations suggest
that the role of experience in the development of
cortical columns is more limited than previously
expected [10, 11, 18, 28]. Observations by Bon-
hoeffer and coworkers [18, 28] in area 18 and also
a recent study by Crair et al. in area 17 [10]
indicate that visual experience is not necessary for
interocularly matched orientation preference maps
in the visual cortex. In addition, Crowley and Katz
[11] demonstrated that in binocularly enucleated
ferrets thalamocortical afferents form patches in
area 17, suggesting an ocular-dominance-segrega-
tion-like process in the absence of retinal input. It
is important to realize that our explanation of the
experience-dependent selection of ODC spacing is
fully consistent with these observations. Theoreti-
cal analyses as the one presented here show that
the formation of cortical columns by mechanism
of synaptic plasticity is primarily determined by
the correlational structure of afferent activity pat-
terns (for review see [36]). The observed patterning
of visual cortical columns in the absence of visual
input can therefore be explained by the occurrence
of structured patterns of spontaneous activity at
the LGN level. Indeed, Weliky and Katz recently
demonstrated that the LGN generates a richly
structured ensemble of spontaneous activity pat-
terns [57]). In the absence of retinal input, the
frequency of spontaneous bursts can even increase
suggesting a compensation for the missing retinal
input, Taken together, these results rather indicate
that visually driven patterns of neuronal activity
are complemented and may even be substituted by
spontaneously generated activity patterns than im-
ply that the formation of columnar patterns is
independent of afferent activity patterns including
those mediated by visual stimuli. The ensemble of
activity patterns that presumably guide the devel-
opment of ODCs in the brains of normal and
squinting animals is therefore suggested to be com-
posed of both spontaneous and visually driven
activity.

The mechanism for changing ODC spacing in
squinting animals identified here can be tested
experimentally in several independent ways. First,
the central result of our theory is that a larger
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spacing of ODCs is achieved by an earlier emer-
gence of the columnar structure. Therefore the
most direct test is to compare the kinetics of
ocular dominance segregation in normal and
squinting animals. A first study comparing the
kinetics of ocular dominance segregation in nor-
mal and squinting animals found that under both
conditions a pattern of functional ODCs is present
at an age of 3 weeks but appears absent one week
earlier [44]. This indicates that the timing differ-
ence to be detected is in the order of days. Second,
our proposed mechanism implies hysteresis. If
squint is induced after ODCs have formed, the
spacing should be the same as in normal animals.
By the same token, squint should not cause a
comparable change of ODC spacing in macaque
monkey visual cortex since in this species the
pattern of ODC appears to be fairly developed at
birth [22]. Also it will be important to directly test
whether the size of CCDs actually decreases dur-
ing development. This can be done by chronic
multielectrode recording as demonstrated by Chiu
and Weliky [7].
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