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We present an analytical approach for studying the coupled development of ocular dominance and

orientation preference columns. Using this approach we demonstrate that ocular dominance segregation

can induce the stabilization and even the production of pinwheels by their crystallization in two types of

periodic lattices. Pinwheel crystallization depends on the overall dominance of one eye over the other, a

condition that is fulfilled during early cortical development. Increasing the strength of intermap coupling

induces a transition from pinwheel-free stripe solutions to intermediate and high pinwheel density states.
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In the primary visual cortex information is processed in
a two-dimensional array of modules called orientation
preference (OP) columns [1]. In many species columnar
patterns contain pinwheel centers, singular points around
which columns activated by different stimulus orientations
are radially arranged like the spokes of a wheel [2]. Recent
research applying in vivo two-photon imaging to pinwheel
centers revealed that their radial organization is laid down
with single cell precision [3]. How pinwheels are formed
during visual development remains unresolved. In theoreti-
cal models pinwheels are generated by spontaneous sym-
metry breaking but are often dynamically unstable [4].
Recent theoretical studies, treating the system of orienta-
tion columns essentially as an isolated system, have exam-
ined if pinwheels may be stabilized by long-range
intracortical interactions [5], by a coupling to the large-
scale map of visual space [6], or by wiring length con-
straints [7]. In the visual cortex, however, orientation col-
umns are presumably interacting with, e.g., ocular
dominance (OD) domains, spatial frequency, and direction
preference columns; see, however, [8]. For instance, OD
borders intersect many of these preferentially at right
angles [9]. It may thus be inadequate to theoretically study
the layout of orientation columns neglecting their relation
to other columnar systems. Recently this perspective has
received experimental support by a study reporting that
orientation columns are organized more smoothly when
the system of OD columns is removed [10]. Indeed, simu-
lations suggest that OD segregation impedes the process of
pinwheel annihilation [4,11]. So far, however, there has
been no analytic demonstration that an intrinsically un-
stable system of orientation pinwheels can be stabilized by
interactions with other maps.

Here we present a dynamical systems approach for
analyzing the interactions of OP and OD maps. We design
a dynamical model for the coordinated development of OP
and OD maps in which pinwheels become unstable in the
weak coupling limit. The intermap coupling is specified

according to experimentally observed geometric relation-
ships between OD and OP maps. Because the contralateral
eye dominates during the initial formation of OD columns
[12], we systematically study the impact of overall domi-
nance by one eye on the dynamics of pinwheels. Using
weakly nonlinear analysis we derive amplitude equations
describing the existence and stability of pinwheel-free and
pinwheel-rich OP maps in the coupled system. We identify
two types of pinwheel-rich solutions differing in their
pinwheel density and calculate the stability and phase
diagram of these solutions as a function of intermap cou-
pling and contralateral eye dominance. We find that pin-
wheel crystals are stable above a critical degree of
contralateral eye dominance that induces a patchy pattern
of OD domains. Increasing the strength of intermap cou-
pling induces a transition from pinwheel-free solutions to
low and high pinwheel density patterns. In the latter regime
OD segregation even induces the formation of additional
pinwheels.
The spatial structure of an OP map is conveniently

represented by a complex field zðxÞ where x denotes the
2D position of neurons in the visual cortex, the modulus
jzðxÞj is a measure of their selectivity, and �ðxÞ ¼ 1

2 argz is

their preferred orientation [4]. In this representation pin-
wheel centers are the zeros of the field zðxÞ. Ocular domi-
nance is described by a real field oðxÞ where negative and
positive values indicate ipsilateral and contralateral eye
dominance, respectively. Because OD and OP maps are
not independent of each other, we consider models con-
taining coupling terms between both fields

@tzðx; tÞ ¼ F½zðx; tÞ; oðx; tÞ�
@toðx; tÞ ¼ G½zðx; tÞ; oðx; tÞ�; (1)

where F½z; o� and G½z; o� are nonlinear operators. Various
biologically detailed models have been cast in this form
[4,13]. Because cortical maps arise from a cellular insta-
bility with a typical wavelength �, the mathematically
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simplest models for the spontaneous generation of these
patterns are of Swift-Hohenberg type [14]. We therefore
choose F and G to be of this type and couple the fields
through an energy density T

@tzðx; tÞ ¼ Lzzðx; tÞ � jzj2z� �
�T

�z

@toðx; tÞ ¼ Looðx; tÞ � oðx; tÞ3 þ �� �
�T

�o
:

(2)

Here Lfo;zg ¼ rfo;zg � ðk2c þ �Þ2, � is an OD bias leading to

an overrepresentation of the contralateral eye for � > 0,
and � is the coupling strength. In this model pinwheels are
unstable in the weak coupling limit leading to systems of
stripes for � ¼ 0, mimicking the behavior of competitive
Hebbian models for OD or OP maps in this situation [4].
The form of T is found from the experimental observation
that iso-orientation lines tend to intersect the OD borders
perpendicularly [9]. T can thus be expected to contain
terms of the form jror�j2m. Decomposing the complex
field zðxÞ into the selectivity jzj and the preferred orienta-
tion � finds

T ¼ jrzroj2m ¼ jzj2mðjror lnjzjj2 þ 4jror�j2Þm
¼ ðjrorRezj2 þ jror Imzj2Þm: (3)

Where orientation selectivity is locally homogeneous, i.e.,
r lnjzj � 0, T is minimized if the direction of the iso-
orientation lines (r�) is perpendicular to the OD borders.
At pinwheel centers the zero contours of Rez and Imz cross
and rRez and r Imz are not parallel, T can be minimized
only if jroj is small at the pinwheel centers, i.e., near
extrema or saddle points of oðxÞ. In the following we
analyze the case m ¼ 2. As we will see below, this choice
allows for a limit in which map interactions become
unidirectional.

We observe that for substantial contralateral bias and
above a critical coupling � pinwheels are preserved or are
even generated after symmetry breaking. Numerical simu-
lations of the dynamics Eq. (2) are shown in Fig. 1. Without

a contralateral bias the attractors are pinwheel-free stripe
solutions irrespective of the strength of the intermap
coupling.
To reveal the exact conditions for the preservation of

pinwheels by intermap coupling, we used weakly nonlinear
analysis to study the nature and stability of different types
of solutions; see [15]. To this end we first studied how the
emerging ODmap depended on the overall eye dominance.
Shifting the OD field by a constant oðx; tÞ ¼ ~oðx; tÞ þ �,
the dynamics Eq. (2) is mapped to @t~oðx; tÞ ¼ ~L ~oþ~�~o2 �
~o3 with ~L ¼ ~r0 � ðk2c þ �Þ2, ~r0 ¼ r0 � 3�2, and ~� ¼
�3�, where � is the real solution of ��3 þ ðr0 � kcÞ�þ
� ¼ 0, an equation that has been extensively studied in
pattern formation literature [16]. It has three types of sta-
tionary solutions: (1) a homogeneous solution with spa-
tially constant eye dominance ocðxÞ ¼ �, (2) OD stripes

ostðxÞ ¼ 2Bst cosðxþ c Þ þ �, with Bst ¼
ffiffiffiffiffiffiffiffi
~r=3

p
, and

(3) hexagonal arrays of ipsilateral eye dominance blobs

in a sea of contralateral eye dominance ohexðxÞ ¼
Bhex

P3
j¼1 e

{c je{
~kj ~x þ c:c:þ �, with

P3
j
~kj ¼ 0,

P3
j c j ¼

�, and Bhex ¼ �~�=15þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið~�=15Þ2 þ ~r=15
p

. The fractions
of contralateral eye dominated territory Cst and Chex in-

crease with � as cosðCst�Þ ¼ ��=ð2BstÞ and ð1� ChexÞ�
ffiffiffi
3

p
2� � 3 arccos½12 ð�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ �

Bhex

q
Þ�2 for (2) or (3)

[Fig. 2(b)]. The phase diagram of this model is depicted
in Fig. 2(a). It shows the stability borders for the three
solutions. Without a bias term the OD map is either con-
stant, for r0 < 0, or has a stripe layout, for r0 > 0. For
positive r0 and increasing bias term there are two transition
regions. First, a transition region from stripes to hexagons
(between �� and ��

2) and, second, a transition region from
hexagons to the homogeneous solution (between ��

3 and

��
4).
Close to instability, stationary solutions to the full dy-

namics Eq. (2) can be calculated analytically by weakly
nonlinear analysis [17]. The Fourier components of the

emerging pattern are located on the critical circle ~kj ¼
ðcosj�=3; sinj�=3Þkc so that

(a) (b) (c) (d)

FIG. 1 (color online). Pinwheel annihilation and preservation
in simulations of Eq. (2) for different strengths of intermap
coupling and OD bias, r0 ¼ 0:2, rz ¼ 0:02. Color-coded OP
map, zero contours of OD map superimposed. (a),(b) � ¼ 0, � ¼
0; 2000 (c),(d) � ¼ 0:15, � ¼ 2000. Upper (lower) row: t ¼ 0
(104=rz). Initial conditions identical in (a)–(c).
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FIG. 2 (color online). (a) Phase diagram of the OD model
Eq. (2). Dashed lines: Stability border of hexagon solutions;
solid line: stability border of stripe solution; gray re-
gions: stability region of homogeneous solution. (b) Contralat-
eral eye dominated neurons for the three stationary solutions.
Circles: Numerically obtained values; solid lines: Cst and Chex.
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zðx; tÞ ¼ X3

j

ðAjðtÞe{ ~kj ~x þ Aj�ðtÞe�{ ~kj ~xÞ

oðx; tÞ ¼ X3

j

ðBjðtÞe{ ~kj ~x þ �BjðtÞe�{ ~kj ~xÞ;
(4)

with the complex amplitudes Aj ¼ Aje
{�j , Bj ¼ Bje

{c j .

Although the coupling terms enter at seventh order in the
amplitude expansion, they can be written as an effective
cubic interaction term. Because Ai / ffiffiffiffi

rz
p

and Bi / ffiffiffiffiffi
r0

p
,

the coupling onto the OD dynamics becomes small for

rz � r0, since terms like �jAj4jBj2B / r2zr
3=2
0 are negli-

gible compared to terms like jBj2B / r3=20 . In this limit, the

backreaction of the OP map onto the OD map is thus
negligible. Using uniform modes Bi ¼ B, the amplitude
equations for the OP map are given by

@tAi ¼ rzAi �
X6

j

gijjAjj2Ai � 2
X3

j�i

AjAj� �Ai�

� �B4
X6

j;l;k

hijlkAjAl
�Ak; (5)

with Aj� ¼ Ajþ3, gii ¼ 1, gij ¼ 2, and hijlk an effective

self-interaction tensor. The dynamics of the modes Ai� is
given by interchanging Ai and Ai� . A solution of hexagonal
symmetry (symmetric under rotation by 120�) to Eq. (5) is
given by the uniform solution Aj ¼ Aj� ¼ A, �j ¼
c j þ ðj� 1Þ2�=3þ d�j;2, and �j� ¼ �c j þ ðj�
1Þ2�=3þ dð�j;1 þ �j;3Þ, where we choose c 1 ¼ c 3 ¼
0, c 2 ¼ �, and the constant d � 1:176 is the solution of
a transcendental equation. For negligible backreaction
B ¼ Bhex and A2 � rz=ð9þ 55:6�B4

hexÞ. The uniform

solution is determined up to a free phase ’ which results
from the orientation shift symmetry z ! ze{’ of Eq. (2).
The positions of the pinwheels are fixed by the OD map
and there are no translational degrees of freedom. In addi-
tion to these hexagonal pinwheel crystals (HPWCs) there
exist also nonuniform solutions. In addition to stripelike
solutions of zðxÞ with one dominant mode we find rhombic
pinwheel crystals (RPWCs) Aj ¼ Aj� ¼ ðA; a;AÞ
with a � A and distorted rhombic crystals Aj ¼
ðA1;A2;A3Þ, Aj� ¼ ðA3;A2;A1Þ, both symmetric

under rotation by 180�. We analytically calculated the
stability properties of the uniform solution by linear stabil-
ity analysis. The phase diagram for rz � r0, cf. Fig. 3(a),
reveals a transition from RPWCs to HPWCs with increas-
ing coupling strength � for intermediate degrees of OD
bias. For �< �� or for � > ��

4 pinwheel-free orientation
stripes are dynamically selected. For �� < �< ��

4 and
above a critical effective coupling strength �B4 � 0:042,
HPWCs are stable and become the energetic ground state
above �B4 � 0:12. Below �B4 � 0:065, RPWCs are sta-
ble leading to a bistability region between RPWCs and
HPWCs. We find in this region that RPWCs transform into

distorted RPWCs above an effective coupling strength of
�B4 � 0:033. Although RPWCs are stable even in the
uncoupled case, they never become the energetic ground
state. Thus for substantial bias towards one eye pinwheels
are in fact stabilized and pinwheel-rich solutions become
ground states by intermap coupling.
The layouts of the main pinwheel-rich solutions are

shown in Figs. 3(b) and 3(c). The HPWC contains six
pinwheels per unit cell and the pinwheel density, i.e., the
number of pinwheels per �2 [4], is given by � ¼
6 cosð�=6Þ � 5:2. The RPWC has four pinwheels per
unit cell and its pinwheel density is � ¼ 4 cosð�=6Þ �
3:5. One may expect that the energy term Eq. (3) favors
pinwheels to colocalize with OD extrema. For HPWCs
three pinwheels of the same topological charge are in
fact located at the extrema of the OD map. The other three,
however, are located near OD borders. In case of the
rhombic layout there is only one pinwheel at an OD
extremum while the other three pinwheels are located at
OD saddle points which are also energetically favorable
positions with respect to T.
We tested whether these solutions and their stability

ranges revealed for rz � r0 persist when the backreaction
on the OD map is taken into account. To this end we solved
the full field dynamics Eq. (2) numerically using a fully
implicit Krylov subspace algorithm with periodic bound-
ary conditions on a 128� 128mesh with an aspect ratio of
� ¼ 22. In simulations we tracked the pinwheel density
from t ¼ 0 to t ¼ 104r�1

z , cf. Fig. 4. In the uncoupled case
(� ¼ 0), most of the patterns decay into a stripe solution
and their pinwheel density drops towards zero. At small
coupling strengths (� ¼ 200) the pinwheel density con-
verges either to zero (stripes), to values near 3.5 for the
RPWC, or to approximately 5.2 for the HPWC. At high
map coupling (� ¼ 2000), pinwheel-free stripe patterns
form neither from pinwheel-rich nor from pinwheel-free
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FIG. 3 (color online). (a) Phase diagram of the model Eq. (5)
for rz � r0. Vertical lines: Stability range of OD hexagons;
lower solid line: stability border of HPWC; upper solid
line: stability border of RPWC; lower dashed line: transition
from rhombic to distorted RPWC. HPWC is ground state above
the upper dashed line. (b) HPWC, (c) RPWC. OD contour
lines: 10%, 50%, 90% contralateral eye dominance (black,
gray, white); dashed line: unit cell.
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initial conditions. In this regime the dominant layout is the
HPWC. However, regions of HPWC layout can be inter-
digitated with long-lived RPWCs and stripe domains.
Figure 4(d) shows the time course of the power PðtÞ ¼
hjzðx; tÞdynj2ix=hjzðx; tÞthj2ix. The field zth is obtained from

solution of the amplitude equations Eq. (4) while zdyn is the

field obtained from the simulation. The amplitudes grow
and saturate after t � r�1

z . When the amplitudes are satu-
rated, pattern selection starts. Quantitatively, we find that
with backreaction the critical coupling strengths are
slightly increased compared to their values in the limit
rz � r0.

Our analysis for the first time conclusively demonstrates
that OD segregation can stabilize pinwheels, even if they
are intrinsically unstable in the uncoupled dynamics of the
OP map, raising the possibility that intermap coupling is
the mechanism of pinwheel stabilization in the visual
cortex. Our results indicate that the overall dominance of
one eye is important for the effectiveness of this mecha-
nism. In this case, OD domains form a system of patches
rather than stripes enabling the capture and stabilization of
pinwheels by intermap coupling. Studying a wide range of
phenomenologically conceivable interaction energies we
find that systems of OD stripes are in general not expected
to stabilize pinwheel patterns. Interestingly, visual cortex
around the time of early OP development is indeed domi-
nated by one eye and has a pronounced patchy layout of
OD domains supporting this notion [12]. Further support
comes from experiments in which the OD map was re-
moved artificially, resulting in a significantly smoother OP
map [10]. Removal of the OD map, however, apparently
does not completely destabilize pinwheels. This might
reflect the influence of additional columnar systems of

patchy layout like spatial frequency or direction columns
that are expected to interact with the OP map in a similar
fashion as OD columns. Interactions among multiple
coupled maps may potentially also explain the noncrystal-
line spatial organization of OP maps in the visual cortex.
The approach introduced here will be useful for further
rigorous analyses of the interaction among multiple maps
in cortical development.
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FIG. 4 (color online). Time evolution of the pinwheel density
for rz ¼ 0:05, r0 ¼ 0:25, � ¼ 0:15. (a)–(c) Simulations started
from an identical set of 20 initial conditions. Dashed
lines: � ¼ 4 cosð�=6Þ and � ¼ 6 cosð�=6Þ. (a)–(c) � ¼
0; 200; 2000. (c) OD and OP stripes as initial conditions [light
gray (green) lines]. (d) Power of OP map, � ¼ 0; 200; 2000 (red
lines, blue lines, green lines).
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