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Abstract. How orientation maps in the visual cortex of the brain develop is a
matter of long standing debate. Experimental and theoretical evidence suggests
that their development represents an activity-dependent self-organization process.
Theoretical analysis [1] exploring this hypothesis predicted that maps at an
early developmental stage are realizations of Gaussian random fields exhibiting a
rigorous lower bound for their densities of topological defects, called pinwheels.
As a consequence, lower pinwheel densities, if observed in adult animals, are
predicted to develop through the motion and annihilation of pinwheel pairs.
Despite of being valid for a large class of developmental models this result depends
on the symmetries of the models and thus of the predicted random field ensembles.
In [1] invariance of the orientation map’s statistical properties under independent
space rotations and orientation shifts was assumed. However, full rotation symme-
try appears to be broken by interactions of cortical neurons, e.g. selective couplings
between groups of neurons with collinear orientation preferences [2]. A recently
proposed new symmetry, called shift-twist symmetry [3], stating that spatial
rotations have to occur together with orientation shifts in order to be an appropri-
ate symmetry transformation, is more consistent with this organization. Here we
generalize our random field approach to this important symmetry class. We pro-
pose a new class of shift-twist symmetric Gaussian random fields and derive the
general correlation functions of this ensemble. It turns out that despite strong
effects of the shift-twist symmetry on the structure of the correlation functions
and on the map layout the lower bound on the pinwheel densities remains unaf-
fected, predicting pinwheel annihilation in systems with low pinwheel densities.

1 Introduction

The ontogenetic development of the cerebral cortex of the brain is a process of astonishing
complexity. In every cubic millimeter of cortical tissue in the order of 106 neurons must be
wired appropriately for their respective functions such as the analysis of sensory inputs, the
storage of skills and memory, or motor control [4]. In the brain of an adult animal, each neu-
ron receives input via about 104 synapses from neighboring and remote cortical neurons and
from subcortical inputs [4]. At the outset of postnatal development, the network is formed
only rudimentarily: For instance in the cat’s visual cortex, most neurons have just finished the
migration from their birth zone lining the cerebral ventricle to the cortical plate at the day of
birth [5]. The number of synapses in the tissue is then only 10% and at the time of eye-opening,
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about two weeks later, only 25% of its adult value [6]. In the following 2–3 months the cortical
circuitry is substantially expanded and reworked and the individual neurons acquire their final
specificities in the processing of visual information [7].
It is a very attractive but still controversial hypothesis that in the ontogenetic development

of the brain the emerging cortical organization is constructed by learning mechanisms which are
similar to those that enable us to acquire skills and knowledge in later life [8–10]. Several lines of
evidence strongly suggest that the brain in a very fundamental sense learns to see. First, visual
experience is very important for the normal development of sight. If the use of the visual
sense is prevented early in life vision becomes irreversibly impaired [7]. Since this is not due
to a malformation of the eye or of peripheral stages of the visual pathway, it suggests that
in development visual input it used to improve the processing capabilities of the visual cor-
tical networks. In addition, the performance of the developing visual system responds very
sensitively to visual experience. In human babies, for instance, already a few hours of visual ex-
perience lead to a marked improvement of visual acuity [11]. Second, the synaptic organization
of the visual cortex is highly plastic and responds with profound and fast functional and struc-
tural reorganization to appropriate experimental manipulations of visual experience [12,13].
These and similar observations suggest that the main origin of perceptual improvement in
early development is due to an activity-dependent and thus use-dependent refinement of the
cortical network. In the course of this neuronal activity patterns that arise in the processing of
visual information in turn guide the further refinement of the cortical network until a mature
configuration is reached. Whereas, theoretically, this hypothesis is very attractive, it is, experi-
mentally, still controversial, whether neural activity actually plays such an instructive role (for
discussion see [14–16]).
Viewed from a dynamical systems perspective, the activity-dependent remodeling of the

of the cortical network described above is a process of dynamical pattern formation. In this
picture, spontaneous symmetry breaking in the developmental dynamics of the cortical net-
work underlies the emergence of cortical selectivities such as orientation preference [17]. The
subsequent convergence of the cortical circuitry towards a mature pattern of selectivities can
be viewed as the development towards an attractor of the developmental dynamics [1]. Here
we will analyze universal properties of a paradigmatic process in visual cortical development:
the development of orientation columns and the formation of their topological defects called
orientation pinwheels.
In the visual cortex, as in most areas of the cerebral cortex information is processed in

a 2-dimensional (2D) array of functional modules, called cortical columns [18,19]. Individual
columns are groups of neurons extending vertically throughout the entire cortical thickness that
share many functional properties. Orientation columns in the visual cortex are composed of neu-
rons preferentially responding to visual contours of a particular stimulus orientation [20]. In a
plane parallel to the cortical surface, neuronal selectivities vary systematically, so that columns
of similar functional properties form highly organized 2D patterns, known as functional cortical
maps. In the case of orientation columns, this 2D organization is characterized by so called
pinwheels, regions in which columns preferring all possible orientations are organized around a
common center in a radial fashion [21,22] (see Figure 1).
Experimental evidence suggests that the formation of orientation columns is a dynamical

process guided by neuronal activity and sensitive to visual experience. In normal development,
orientation columns first form at about the time of eye opening [23–25]. Comparison of this
process to the development under conditions of modified visual experience demonstrates that
adequate visual experience is essential for the complete maturation of orientation columns and
that impaired visual experience, as with experimentally closed eye-lids can suppress or impair
the formation of orientation columns [25]. Most intriguingly, when visual inputs are experi-
mentally redirected to drive what would normally become primary auditory cortex, orientation
selective neurons and a pattern of orientation columns even forms in this brain region that would
normally not at all be involved in the processing of visual information [26]. In particular the
latter observation strongly suggests that the capability to form a system of orientation columns
is intrinsic to the learning dynamics of the cerebral cortex given appropriate inputs. Taken
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Fig. 1. Patterns of orientation columns in the primary visual cortex of a tree shrew visualized using
optical imaging of intrinsic signals (figure modified from [2]). Activity patterns resulting from stimula-
tion with vertically and obliquely oriented gratings are shown in (a). White bars depict the orientation
of the visual stimulus. Activated columns are labeled dark grey. The used stimuli activate only columns
in the primary visual cortex (V1 in the lower left parts of (a)). The pattern of orientation preferences
calculated from such activity patterns is shown in (b). The orientation preferences of the columns are
color coded as indicated by the bars. A part of the pattern of orientation preferences is shown at higher
magnification in (c). Two pinwheel centers of opposite topological charge are marked by arrows.

together, these lines of evidence mark the formation of orientation columns as a paradigmatic
problem in the dynamics of cortical development and plasticity.

Owing to the large number of degrees of freedom of any realistic scale microscopic model of
visual cortical development, the description of the development of the pattern of columns by
equations for the synaptic connections between individual nerve cells is very complicated. On
the order of 106 synaptic strengths would be required to realistically describe, for example, the
pattern of orientation preference in a 4×4mm2 piece of the visual cortex. This complexity and
the presently very incomplete knowledge about the nature of realistic equations for the dynamics
of visual cortical development demand that theoretical analyzes concentrate on aspects that
are relatively independent of the exact form of the equations and are representative for a large
class of models. An appropriate framework for this is provided by models in which the emerging
cortical architecture is described by order parameter fields and its development by a dynamics
of such fields [1,27–33].
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A few years ago, Geisel and Wolf discovered that experimentally accessible signatures of an
activity-dependent refinement of the cortical network are predicted by universal properties of
this very general class of models for the development of visual cortical orientation preference
maps [1]. They demonstrated that if the pattern of orientation preferences is set up by learning
mechanisms, then the number of pinwheels generated early in development exhibits a universal
minimal value that depends only on general symmetry properties of the cortical network. This
model suggests that in species exhibiting a lower number of pinwheels in the adult, pinwheels
must move and annihilate in pairs during the refinement of the cortical circuitry. Verification of
this intriguing prediction would provide striking evidence for the activity-dependent generation
of the basic visual cortical processing architecture.
Despite of being valid for a large class of developmental models this result depends on the

symmetries of the models and thus of the predicted random field ensembles. In [1] invariance of
the orientation map’s statistical properties under independent space rotations and orientation
shifts was assumed. However, full rotation symmetry appears to be broken by interactions
of cortical neurons in V1, e.g. selective couplings between groups of neurons with collinear
orientation preferences [2]. A recently proposed new symmetry, called shift-twist symmetry [3],
stating that spatial rotations have to occur together with orientation shifts in order to be an
appropriate symmetry transformation, is more consistent with this organization.
Here we will analyze the consequences of this reduced symmetry for the generation of

pinwheel defects and the layout of orientation maps. Our analysis will be based on the descrip-
tion of the development of orientation preference columns in terms of a dynamics of abstract
order parameter fields. We will connect this description to the theory of Gaussian random fields,
and show how the theory of Gaussian random fields can be used to obtain quantitative informa-
tion on the generation and motion of pinwheel defects, in the two dimensional pattern of visual
cortical orientation columns. We will also show how the reduced symmetry impacts on the
spatial structure of the cortical orientation map.

2 Mathematical framework

2.1 Orientation maps

Orientation preference maps (OPMs) are obtained in optical imaging experiments [22] as
follows: The animal’s gaze is directed towards a monitor screen where moving oriented bars
of a specific orientation θn are shown while the cortical activity E(x|θn) at cortical location
x = (x, y) evoked by this presented stimulus is recorded. The experiment is repeated several
times for different orientations θn. Standard protocols use N = 4, 8 or 16 different orientations,
with θn = nπ/N and index n = (0, 1, . . . , N − 1). In order to obtain the OPM these activity
patterns are vector averaged, resulting in a complex valued field,

z(x) =

N∑
n=1

E(x|θn) exp(i 2θn)

whose argument

θOP (x) =
1

2
arg z(x)

then gives the OPM. Experimentally it is found that the activity patterns – therefore also z(x)
- are smooth (e.g. [2,?,?]), in the sense that they change gradually along the cortical surface,
without discontinuities. As a result θ(x) progresses smoothly, too, except at characteristic point-
like singularities, called pinwheel centers, located at positions where z(x) = 0.
Our approach in this paper is based on the mathematical description of orientation prefer-

ence maps in terms of complex valued fields z(x), which we assume to be smooth and sufficiently
often differentiable. We adopt the same conventions as in the experiment. Regions where the
real (imaginary) part of z prevails, denote regions with horizontal and vertical (right and left
oblique) orientation preferences. Retinal coordinates r are represented in primary visual cortex
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coordinates x by a continuous retinotopic map r(x). For simplicity we identify cortical and reti-
nal coordinates by setting r(x) = x, e.g. the orientation preference with a neuron responding
to stimuli at retinal position r will be represented by z(r).

2.2 Modelling the development of orientation preference maps

We assume that the emergence of OPMs in the visual cortex is caused by activity dependent
changes of cortical selectivities driven by afferent activity patterns received from lower stages
of the visual pathway. The layout of an OPM zi+1(x) at time i + 1 after reception of the i-th
activity pattern depends on the orientation map at time i, zi(x), on the retinal input S(r) and
on the evoked cortical activity E(x) = E [S(r), zi(x)] which itself is assumed to be a functional
of the retinal input S(x) and the actual orientation map zi(x), e.g.

zi+1(x)− zi(x) = f [S, zi, E [S, zi]]
If the impact of each individual activity pattern is small and afferent activity patterns are
randomly drawn from a fixed stimulus ensemble then the temporal evolution of the field z((x, t))
on large timescales is described by

∂tz(x) = 〈f [S, zi, E [S, zi]]〉{S} (1)

which does only depend on the stimulus ensemble {S} but not on individual stimuli, such that
we can write an effective dynamics for z(x) as

∂tz(x) = F [z(x)]

Clearly F [z] will depend on the statistics of the stimulus ensemble {S}. For concrete examples
of such models see [1] and references therein.

2.3 Symmetry considerations

Models of the form of Eq. (1) can explain the emergence of patterns resembling orientation
maps [29,34–36]. Even without specifying the functional form of f, E and F we can draw some
important conclusions on the symmetries they should fullfill. For the following we assume that
the stimuli S(r) are assemblies of spatially extended contours, a characteristic feature of natural
images, and that the stimulus ensemble {S} is rotation, translation and reflection invariant,
i.e. for a given S(r) which is in the ensemble also its rotated

(RφS)(r) := S(R−1φ r),
translated

(TaS)(r) := S(r− a),
and reflected counterparts

(PS)(x, y) := S(x,−y),
are included. A stimulus S(r) will evoke activity in the cortex, denoted by E(x) = E [S, z], which
also depends on the orientation preference map. Suppose that both, stimulus and orientation
preference map are rotated by the same angle φ,

S′ = RφS z′ = Rφz

The evoked response E = E [RφS, Rφz] after that rotation will in general be different from
the rotated counterpart of E, which we denote by RφE (see Fig. 2 left and middle column).
However, if together with the spatial rotation of the OPM and the stimulus also the neurons’
preferred orientations are shifted by the same angle φ,

z(x)→ e2iφz(R−1φ x) ≡ e2iφRφz
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then the resulting activity profile will be identical to RφE (Fig. 2 right column),

E [RφS, e2iφRφz] = RφE [S, z].
This transformation which couples spatial rotations and shifts in preferred orientation was
introduced by Bressloff et al. [3] and called shift-twist transformation (see Fig 2). For the
functional f governing activity dependent changes this implies

f [RφS, e
2iφRφz, RφE] = e

2iφRφf [S, z, E]

From these considerations it follows that the effective dynamics ∂tz(x) = F [z(x)] must be shift
twist equivariant, i.e.

∂te
2iφRφz = F [e

2iφRφz]
!
= e2iφRφF [z]

such that shift-twist transformations commute with the functional F and therefore constitute
a symmetry of the dynamics:

F [e2iφRφz] = 〈f [S, e2iφRφz, E [S, e2iφRφz]]〉S
= 〈f [RφS, e2iφRφz, E [RφS, e2iφRφz]]〉S = e2iφRφF [z]

Here, the first line is just the definition of the functional F , in the second line we use
the rotation invariance of the stimulus ensemble and the last line follows from the properties
of the plasticity rule stated above. Similarly from translation and reflection invariant stimulus
statistics one obtains equivariance of the dynamics under translations and shift-twist reflections
(reflection in coordinate space and in preferred orientation)

F [Taz] = TaF [z] F [P z̄] = PF [z]

2.4 Ensembles of orientation preference maps

The layout of an orientation map z(x, t) at time t whose development is modeled by a dynamics
as in Eq. (1) will depend on the initial conditions z(x, 0) at t = 0. As suggested by experimental
findings the unselective initial state may be modeled by low amplitude random fluctuations
of orientation preference. As there is no reason to prefer one initial condition over others the
natural approach is to consider an ensemble of OPMs {z(x, t} consisting of all orientation maps
which will evolve out of this set of initial conditions. Statistical properties of such an ensemble
are determined by a functional Pt[z(x)] assigning a statistical weight to each orientation map
z(x) in the ensemble at a fixed time t. The dynamics of the ensemble {z(x, t} is then reflected
in the time dependency of the functional Pt. For the early linear (t small) and the asymptotic
regimes (t → ∞) one can specify the functional form of P [z]. In particular one finds that
in the linear regime the ensemble of orientation maps constitutes a Gaussian random field
ensemble with Gaussian probability distribution [1,37]. Operations under which the dynamics
is equivariant will leave the statistical weight P[z] invariant and therefore represent a symmetry
of the ensemble. In the following we will consider two cases of symmetry classes: Case 1–shift
symmetry, denoting symmetry under both, spatial rotations and orientation shifts, applied
independently, resulting in a O(2) × O(2) symmetry group. Case 2 – shift-twist symmetry,
denoting symmetry under the reduced O(2) group of shift-twists, where spatial rotations have
to occur together with orientation shifts by the same angle. As the degree to which shift
symmetry is broken in the visual cortex is currently unknown we will study both cases. In
particular, for shift symmetry we have

P[Rφz] = P[z] P[e2iφz] = P[z] P[Taz] = P[z] P[Pz] = P[z], P[z̄] = P[z]
and for shift-twist symmetry we have

P[e2iφRφz] = P[z] P[Taz] = P[z] P[Pz̄] = P[z]
Orientation maps which are related by such a symmetry operation are equivalent in the sense
that they will have the same probability of occurring during development.
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Fig. 2. Scheme illustrating the symmetry of the learning rule under shift-twists. Left column: An
stimulus, e.g. an elongated contour (upper left) elicits an activity profile (lower left, active neurons
corresponding to dark regions) which depends on the orientation map (middle left).Middle column:
Spatial rotation by an angle φ (e.g. here by φ = 90◦, clockwise) of the stimulus and the orientation map
elicits an activity profile which differs from the rotated profile before. Right column: In contrast, the
elicited activity profile will be identical to the rotated profile if the OPM is rotated and shifted by the
same angle at the same time, resulting in a shift-twist rotation.

3 Correlation functions of orientation map ensembles

Given an ensemble within a symmetry class like one of those defined above, what can we tell
about the spatial layout of its typical representatives? In this section we will address this issue
by analyzing the impact of symmetry assumptions on the form of correlation functions.

3.1 Correlation functions

For any particular point in time the statistical functional Pt[z] defines an ensemble of random
fields at each point in time and thus contains all the information about the ensembles. An
equivalent characterization of the ensembles may be given in terms of its correlation functions
cnm(x1,x2, . . .xm,xm+1, . . . ,xm+n) - assuming they exist – defined by

cnm(x1,x2, . . .xm,xm+1, . . . ,xm+n) = 〈z(x1)z(x2) . . . z(xm)z̄(xm+1) . . . z̄(xm+n)〉
where the angular brackets represent the ensemble average. The form of these correlation
functions is constrained by the symmetries of the ensemble. Symmetries of the random field
ensemble are transformations of the fields z(x) which will leave the functional Pt[z] and thus
also all correlation functions are invariant. For Gaussian random fields, which we will consider
subsequently, cnm can be expressed by combinations of 1-point and 2-point correlation functions,
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such that knowledge of 〈z(x)〉, 〈z̄(x)〉,〈z(x)z̄(y)〉, 〈z(x)z(y)〉 provides a complete description of
the ensemble. As we assume translation invariance we have

〈z(x)〉 = 〈z(0)〉
and the 2-point correlation function such as 〈z(x1)z(x2)〉 only depend on their relative argument
r = x2 − x1. We define

C1(r) = 〈z(x1)z̄(x1 + r)〉 (2)

C2(r) = 〈z(x1)z(x1 + r)〉 (3)

C1(r) is real, due to translation and inversion symmetry, i.e.

C1(r) = 〈z(x1)z̄(x1 + r)〉 = 〈z(−x1 − r)z̄(−x1)〉 = 〈z(x1 + r)z̄(x1)〉 = C̄1(r)
and corresponds to the sum of the autocorrelation functions of the real and imaginary parts of
z(x), which follows after inserting z(x) = Rez(x) + i Imz(x),

C1(r) = 〈Rez(0)Rez(r)〉+ 〈Imz(0) Imz(r)〉+ i [〈Rez(0) Imz(r)〉 − 〈Imz(0)Rez(r)〉] ,
where the imaginary part vanishes as already shown. C2(r) is complex, and from

C2(r) = 〈Rez(0)Rez(r)〉 − 〈Imz(0) Imz(r)〉+ i [〈Rez(0) Imz(r)〉+ 〈Imz(0)Rez(r)〉]
= 〈Rez(0)Rez(r)〉 − 〈Imz(0) Imz(r)〉+ 2 i 〈Rez(0) Imz(r)〉

(where again we used translation and inversion symmetry) we see that ReC2(r) corresponds to
the difference of the autocorrelation functions and ImC2(r) to the crosscorrelation of Rez(x)
and Imz(x).

3.2 Shift-twist symmetry and shift symmetry

We are now prepared to study the additional implications of shift-twist and reflection symmetry
on the 2-point functions. Invariance under shift-twist transformations z(x)→ exp(2iψ) z(R−ψx)
also implies vanishing of 1-point functions due to the requirement

〈z(0)〉 != exp(2iψ)〈z(0)〉 ∀ψ.
In general 2-point correlation functions will not vanish. However, symmetry constrains their
functional form. For instance, we will see that C2(r) is complex valued and can be written in
general form

C2(r) = (x+ iy)
4f(r)

with a radially symmetric function f(r) = f(|r|). To see this we expand C1(r) and C2(r) into
power series about r = 0,

C1(r) =
∑

ãmnr
mr̄n (4)

C2(r) =
∑

b̃mnr
mr̄n (5)

with m, n ∈ N and amn, bmn ∈ C. Here we identified the coordinate vector r = (x, y) with
the complex number r = x + iy and performed an expansion in r and r̄ = x − iy, which is
strictly equivalent to an expansion in x and y, but has the advantage that spatial rotations
r → Rφr can be replaced by multiplication with a complex phase r → exp(iφ)r. Under shift-
twist transformations the correlation functions transform as follows:

C1(r) = 〈z(0)z̄(r)〉 → 〈z(0) z̄(R−φr)〉 = C1(R−φr)
C2(r) = 〈z(0) z(r)〉 → e4iφ〈z(0) z(R−φr)〉 = e4iφC2(R−φr)
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Invariance of the correlation functions under shift-twist transformations leads to the conditions

C1(r)
!
= C1(e

−iφr) (6)

C2(r)
!
= e4iφC2(e

−iφr) (7)

As the left sides of these equations do not depend on φ we can average over all angles and
obtain

C1(r) =
∑

ãmnr
mr̄n

1

2π

∫ 2π
0

dφ e−iφ(m−n) =
∞∑
n=0

an(rr̄)
n (8)

C2(r) =
∑

b̃mnr
mr̄n

1

2π

∫ 2π
0

dφ e−iφ(m−n−4) = (x+ iy)4
∞∑
n=0

bn(rr̄)
n (9)

from which can read off that C1(r) is radially symmetric as it only depends on rr̄ = x2 + y2.
As shown before, C1(r) is real, and therefore an ∈ R. Furthermore, symmetry under shift-twist
reflection z(x)→ z(x̄), z(r)→ z̄(r̄) requires C2(r) = C̄2(r̄). This is fullfilled if bn ∈ R. Together
we get

C2(r) = (x+ iy)
4f(r) =

(
x4 − 6x2y2 + y4 + 4 i xy(x2 − y2)) f(r) (10)

with real, radially symmetric function f(r) =
∑∞
n=0 bn(rr̄)

n. For f(r) ≡ 0, full O(2) × O(2)
symmetry is restored. In that case Rez(x) and Imz(x) are uncorrelated and their autocorrelation
functions are identical. However, in general f(r) does not vanish and O(2)×O(2) symmetry is
broken down to the O(2) subgroup of shift-twist transformations.

3.3 Correlation functions in k-space

Alternatively, the 2-point coorelations may also be represented in Fourier representation. The
cross correlations of the Fourier modes a(k) = 1

2π

∫
dk z(x)e−ikx are given by

〈a(k) ā(k′)〉 = 1

(2π)2

∫
dx

∫
dx′e−ikxeik

′x′〈z(x)z̄(x′)〉 (11)

=
1

(2π)2

∫
dx

∫
dx′e−ikxeik

′x′〈z(0)z̄(x′ − x)〉 (12)

=
1

(2π)2

∫
dx

∫
dx′ei(k

′−k)xeik
′x′〈z(0)z̄(x′)〉 (13)

= P1(k)δ(k− k′) (14)

〈a(k) a(k′)〉 = 1

(2π)2

∫
dx

∫
dx′e−ikxe−ik

′x′〈z(x)z(x′)〉 (15)

=
1

(2π)2

∫
dx

∫
dx′e−ikxe−ik

′x′〈z(0)z(x′ − x)〉 (16)

=
1

(2π)2

∫
dx

∫
dx′e−i(k+k

′)xe−ik
′x′〈z(0)z(x′)〉 (17)

= P2(k)δ(k+ k
′) (18)

where P1(k) and P2(k) denote the Fourier transforms of C1(r) and C2(r). From these
expressions we see that almost all correlators vanish, except of 〈a(k)ā(k)〉 and 〈a(k)a(−k)〉.
Let us briefly note the constraints imposed on P1(k) and P2(k) by O(2)×O(2) and shift-twist
symmetry.
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1. Invariance of P1(k) and P2(k) under coordinate rotations, a(k) → a(R−1φ k), reflec-
tions, a(k) → a(±k̄), orientation shifts, a(k) → exp(iψ)a(k) and orientation reflections
a(k)→ ā(k) implies rotation invariant, positive P1(k) and vanishing of P2(k), such that all
Fourier modes decouple:

P1(k) = 〈a(k)ā(k)〉 Rot−→ 〈a(R−ψk)ā(R−ψk)〉 = P1(R−ψk)

P2(k) = 〈a(k)a(−k)〉 Shift−→ exp 2iψ〈a(k)a(−k)〉 = exp 2iψP2(k)
2. Invariance under shift-twist rotations a(k)→ ei2φa(R−1φ k) and shift-twist reflections a(k)→
ā(±k̄) implies rotation invariant, real valued P1(k) and P2(k) of the following general form

P2(k) = exp(4i arg(k))g(k) (19)

with arg(k) := arg(kx + iky) and rotation invariant, real valued g(k):

P1(k) = 〈a(k)ā(k)〉 ShTw−→ 〈a(R−φk)ā(R−φk)〉 = P1(R−φk)

P2(k) = 〈a(k)a(−k)〉 ShTw−→ exp(4iφ)〈a(R−φk)a(−R−φk)〉 = exp(4iφ)P2(R−φk)
Any function P2(k) fullfilling this condition is of the form

P2(k) = exp(4i arg(k))g(k).

Invariance under shift-twist reflections finally requires

g(k) = ḡ(k)

such that g(k) ∈ R.

3.4 The degree of shift-symmetry breaking

From this follows that the covariance matrix C of

η(k) := (Rea(k), Rea(−k), Ima(k), Ima(−k))
is

C(k) =
1

2



P1(k) ReP2(k) 0 ImP2(k)
ReP2(k) P1(k) ImP2(k) 0
0 ImP2(k) P1(k) −ReP2(k)
ImP2(k) 0 −ReP2(k) P1(k)


 . (20)

It has two eigenvalues

λ1,2(k) =
1

2
[P1(k) ± |P2(k)|] , (21)

each of which is doubly degenerated. Since a covariance matrix is positive definite, P1(k) and
P2(k) must satisfy the inequality

|P2(k)| ≤ P1(k). (22)

for any admissible pair of correlation functions. A convenient measure of the degree of shift
symmetry breaking is derived from the ratio

Q(k) :=
|P2(k)|
P1(k)

, 0 ≤ Q(k) ≤ 1 (23)

Its expectation value q which we define with respect to the powerspectral density P1(k), is
given by

q :=
1

2π

∫
d2kQ(k)P1(k) =

1

2π

∫
d2k |P2(k)|, (24)
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which provides a suitable index for the average degree of symmetry breaking (we choose the
normalization

∫
d2kP1(k) = 2π, consistent with the conventions taken in the next section). For

P2(k) = 0, the case of complete O(2) × O(2) shift symmetry, the index q vanishes and a(k)
and a(−k) are uncorrelated. For |P2(k)| = P1(k), where O(2) × O(2) symmetry is maximally
broken, q = 1 and the correlations of a(k) and a(−k) are maximal. Now that we determined
the general 2-point functions for each of the two symmetry classes we can proceed by choosing
specific functions C1(r), C2(r) and investigating the properties of typical realizations for the
corresponding Gaussian orientation maps.

4 Gaussian orientation maps

Whereas it would be somewhat cumbersome to create realizations of Gaussian orientation maps
in x-space, it is quite easy to do this in the Fourier domain, as most of the Fourier modes a(k)
decouple, due to translation invariance. In order to inspect the consequences of broken shift-
twist symmetry on the map layout we define a set of model correlation functions and then give
examples of the resulting patterns.

4.1 How to generate gaussian orientation maps

In this subsection we present a straightforward method for generating realizations of Gaussian
orientation maps numerically, given correlation functions C1(r) and C2(r), or their Fourier
transforms P1(k) and P2(k). In the following we assume that Fourier space is discretized,
i.e. that all k vectors are located on a lattice. A realization of a Gaussian map z(x) is then
constructed by superposition of complex plane waves z(x) =

∑
k a(k)e

ikx, where the amplitudes
a(k) are normally distributed, complex valued random numbers satisfying

〈a(k)ā(k′)〉 = P1(k) δk,k′ (25)

〈a(k)a(k′)〉 = P2(k) δk,−k′ (26)

Due to its positive definiteness C can be decomposed as follows:

C = VTV (27)

with symmetric matrix V

V =
1

2 (
√
λ1 +

√
λ2)



P1 + 2

√
λ1λ2 ReP2 0 ImP2

ReP2 P1 + 2
√
λ1λ2 ImP2 0

0 ImP2 P1 + 2
√
λ1λ2 −ReP2

ImP2 0 −ReP2 P1 + 2
√
λ1λ2




where the argument k is omitted here and in the following for ease of notation. Given a set of
independent, normally distributed, real valued random variables

ξ = (ξ1, ξ2, ξ3, ξ4)

of zero mean and unit variance,

〈ξi〉 = 0 〈ξiξj〉 = δij
The choice of

η = Vξ

then gives random variables with desired covariance matrix C:

〈ηiηj〉 =
∑
kl

VikVjl〈ξkξl〉 =
∑
k

VikVkj = Cij
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4.2 A specific model

In this section, we investigate the impact of shift-twist symmetry on the layout of orienta-
tion maps for realizations of GRFs for a specific set of correlation functions. Optical imaging
data reveals that the powerspectrum P1(k) of OPMs occupies an annulus in two dimensional
k-space, organized around a circle of typical wavenumber k0, which reflects the fact that OPMs
are arranged in repetitive hypercolumns of typical spatial scale Λ = 2π

k0
([15] and references

therein). Accordingly, we define a set of functions P1(k) sharing this property, depending on a
parameter β controlling the width of the annulus. For a given value of the order parameter q
we further define a model for P2(k) fullfilling inequality (23).

Fig. 3. Model powerspectra P1(k), width controlled by parameter β, and corresponding correlation
functions C1(r).

4.2.1 P1(k) and P2(k)

For the correlation functions of the ensembles we chose

P1(k) = A |k|βe−|k|2B P2(k) = q P1(k) e
4iArg(kx+iky) (28)

with constants A and B,

A = 2

(
Γ

(
2 + β

2

))1+β
/

(
Γ

(
1 + β

2

))2+β

B =

(
Γ

(
2 + β

2

))2 /(
Γ

(
1 + β

2

))2
.

The correlation functions depend on two parameters, β and q, controlling the width of the
power spectrum and the amount of symmetry breaking, respectively. With this choice of A and
B the correlations P1 and P2 satisfy have following properties:

1. The radial part of P1(k), for which we write P1(k) in the following, is normalized to 1,∫ ∞
0

dk P1(k) = 1 (29)

2. P1(k) is normalized to 2π ∫
d2kP1(k) = 2π,
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Fig. 4. 2-point correlation function in Fourier representation (upper row) and in space representation
(lower row). Whereas P1 and C1 are real valued, P2 and C2 are complex valued and have characteristic
cloverleaved shape (β = 10, q = 1).

which, due to rotation symmetry of P1(k), implies a typical wavenumber k0 = 1,

k0 =

∫
dk k P1(k) = 1. (30)

3. Q(k) as defined in Eq. (23) has the same value for all k and equals q as defined in Eq. (24),

|P2(k)| = q P1(k).

It is thus assumed in this simple model, that the degree of shift symmetry breaking is
constant over the relevant range of wavenumbers and spatial scales.

As required by both symmetry classes, the function P1(k) is rotation invariant. From this
follows that P2(k) is of the form required by Eq. (19) and therefore shift-twist invariant. For
β = 1 the annulus of the powerspectrum is very broad, for large β 
 1 it becomes arbitrarily
narrow. Only values of β ≥ 1 are considered. Examples of P1(k) and P2(k) for different values
of β are displayed in Fig. 4.

4.2.2 C1(r) and C2(r)

The correlation functions in x-space are given by

C1(r) = 1F1

(
2 + β

2
; 1 ;− r

2

4B

)

C2(r) = (x+ i y)
4
1F1

(
6 + β

2
; 5 ;− r

2

4B

)
AB−

6+β
2

768

where 1F1 denotes the confluent hypergeometric function of the first kind (see Appendix A).
Indeed, these expressions match the general form of Eqns. (9), (10).
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Fig. 5. Left: Examples of Gaussian orientation maps, Rez(x) and Imz(x) of a random map for three
degrees of broken shift symmetry: q = 0, full shift symmetry (upper row); q = .5, intermediate case
(middle row); q = 1, shift symmetry maximally broken (bottom row), β = 10 for all cases. Right:
Scheme of the underlying retinotopic map. In our model we identified retinal and cortical coordinates.

4.3 Spatial locking of orientation domains

Figure 5 shows the predicted consequences of increasingly broken shift symmetry on the spatial
organization of orientation maps. It displays three examples of random orientation maps gener-
ated from ensembles with varying degree of shift symmetry breaking. When shift symmetry in
not broken (q = 0) the layout of orientation domains preferring cardinal orientations described
by the real part of the field z(x) and oblique orientations described by its imaginary part
are statistically independent and each exhibits a patchy, irregular and statistically isotropic
organization. When shift symmetry is increasingly broken (q = 0.5, 1) iso-orientation
domains acquire a more band-like appearance and the orientation of the bands
becomes spatially locked to specific cortical axes. In the examples shown, cardinal domains
are preferentially extending along the horizontal and vertical axes, whereas oblique domains
are preferentially extending along the two oblique directions. This spatial locking becomes more
pronounced with increasing degree of symmetry breaking.

5 Pinwheel densities

A few years ago, Geisel and Wolf demonstrated that the number of pinwheels generated early
in development exhibits a universal minimal value that depends only on general symmetry
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properties of the cortical network. This result suggested that in species exhibiting a lower num-
ber of pinwheels in the adult, pinwheels must move and annihilate in pairs during the refine-
ment of the cortical circuitry [1]. Verification of this intriguing prediction would therefor provide
striking evidence for the activity-dependent generation of the basic visual cortical processing
architecture. In this section we revisit the problem of early pinwheel densities for O(2) × O(2)
as well as for shift-twist invariant Gaussian orientation maps and analyze whether broken shift
symmetry influences pinwheel generation and affects the previously calculated lower bound.

5.1 Pinwheel densities

Pinwheel centers are the zeros of the complex field z(r), such that at the pinwheel Rez = 0 and
Imz = 0. The number N(A) of these zeros in an area A is given by

N(A) =

∫
A

d2r δ(Rez(r))δ(Imz(r))

∣∣∣∣∂[Rez(r), Imz(r)]∂[x, y]

∣∣∣∣ (31)

with the Jacobian

∂[Rez(r), Imz(r)]

∂[x, y]
=
∂Rez(r)

∂x

∂Imz(r)

∂x
− ∂Rez(r)

∂y

∂Imz(r)

∂x
.

The Jacobian ensures that in the integral of Eq. (31) every pinwheel will increment N(A)
by one unit. The expectation value of the number of pinwheel in the ensemble of GRFs is then
given by the ensemble average

〈N(A)〉 =
〈∫

A

d2rδ(Rez(r)) δ(Imz(r))

∣∣∣∣∂[Rez(r), Imz(r)]∂[x, y]

∣∣∣∣
〉
,

from which follows that the average pinwheel density ρ(r) equals

ρ(r) =

〈
δ(Rez(r)) δ(Imz(r))

∣∣∣∣∂[Rez(r), Imz(r)]∂[x, y]

∣∣∣∣
〉
.

It is important to note that this expectation value does only depend on local quantities, namely
the values of z(r) and its derivatives ∇z(r) at a given location r. As we assumed translation
invariance of the ensemble this value must be the same for all r and we drop the explicit
dependency on r in the following, writing

ρ =

〈
δ(Rez) δ(Imz)

∣∣∣∣∂[Rez, Imz]∂[x, y]

∣∣∣∣
〉
.

In order to evaluate this expression it is sufficient to know the joint probability density of ∇z.
Because any linear functional of a Gaussian random variable is normally distributed, it follows
that derivatives ∇z are also normally distributed. For this reason p(Rez, Imz,∇Rez,∇Imz) is
a multivariate Gaussian of the form

p(ζ) =

√
detW

(2π)6
exp

(
−1
2
ζW−1 ζ

)

where we used the abbreviation ζ = (Rez, Imz, ∂xRez, ∂yRez, ∂xImz, ∂yImz). The symmetric
covariance matrix W is defined by




〈RezRez〉 〈Rez Imz〉 〈Rez ∂xRez〉 〈Rez ∂yRez〉 〈Rez ∂xImz〉 〈Rez ∂yImz〉
. 〈Imz Imz〉 〈Imz ∂xRez〉 〈Imz ∂yRez〉 〈Imz ∂xImz〉 〈Imz ∂yImz〉
. . 〈∂xRez ∂xRez〉 〈∂xRez ∂yRez〉 〈∂xRez ∂xImz〉 〈∂xRez ∂yImz〉
. . . 〈∂yRez ∂yRez〉 〈∂yRez ∂xImz〉 〈∂yRez ∂yImz〉
. . . . 〈∂xImz ∂xImz〉 〈∂xImz ∂yImz〉
. . . . . 〈∂yImz ∂yImz〉



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where the matrix elements can be expressed in terms of the correlation functions C1 and C2 as
follows

〈RezRez〉 = 1
2
[C1(0) + ReC2(0)] 〈Imz Imz〉 = 1

2
[C1(0)− ReC2(0)]

〈Rez Imz〉 = 1
2
ImC2(0)

The remaining matrix elements involving derivatives can be obtained from the previous expres-
sions by differentiation, e.g.

〈Rez ∂jRez〉 = 1
2
∂j [C1(0) + ReC2(0)] 〈∂iRez ∂jRez〉 = −1

2
∂i∂j [C1(0)− ReC2(0)]

Note the occurrence of a minus sign in terms with two derivatives. It is important to realize that
due to the prefactor (x + iy)4 occurring in the general formula for C2(r), Eq. (10), all terms
containing C2, e.g. C2(0), ∂iC2(0) and ∂i∂jC2(0) vanish when evaluated at r = 0. For that
reason the pinwheel density exclusively depends on the rotation invariant correlation function
C1and is in general independent of C2. This means in particular that the pinwheel density does
not depend on the degree of shift symmetry breaking q. The symmetric covariance matrix W
then states

W =
1

2




C1(0) 0 ∂xC1(0) ∂yC1(0) 0 0
. C1(0) 0 0 ∂xC1(0) ∂yC1(0)
. . −∂xxC1(0) −∂xyC1(0) 0 0
. . . −∂yyC1(0) 0 0
. . . . −∂xxC1(0) −∂xyC1(0)
. . . . . −∂yyC1(0)




Due to rotation symmetry also the terms ∂iC1(0) and ∂i∂jC1(0) vanish, and we finally obtain
a diagonal matrix

W = diag(cA, cA, cG, cG, cG, cG)

where we introduced the abbreviations

cA =
1

2
C1(0) cG = −1

4
∆C1(0)

and used that fact that ∂xxC1(0) = ∂yyC1(0) by rotation invariance of C1(r). The joint prob-
ability distribution p(ζ) then reads

p(ζ) =
1

(2π)3cAc2G
exp

(
− zz̄

2 cA

)
exp

(
−∇z∇z̄
2 cG

)

We can now perform the ensemble average, given by the integral

ρ =

∫
dζ p(ζ) δ(Rez) δ(Imz)

∣∣∣∣∂[Rez, Imz]∂[x, y]

∣∣∣∣ ,
to obtain the pinwheel density ρ. The result of this straightforward calculation yields (see
Appendix B):

ρ = − ∆C1(0)
4πC1(0)

(32)

5.2 Model pinwheel densities

Next we evaluate the analytical expression Eq. (32) for ensembles of Gaussian orientation maps
defined by the correlation functions Eq. (28). The calculation of the rescaled pinwheel density
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Fig. 6. Relative pinwheel density ρ̂ as a function of powerspectral width β for q = 0, .5, 1. Full Line:
Analytical prediction, Data points: Numerical simulation, average over 50 GRFs.

ρ̂ = ρΛ2 yields

ρ̂ = π
(2 + β)Γ

[
1+β
2

]2
2Γ

[
2+β
2

]2 (33)

which depends on the parameter β controlling the width of the powerspectrum but is
independent of q, the degree of shift symmetry breaking. We performed simulations by gener-
ating 50 configurations of GRFs for several values of β (1 ≤ β ≤ 100]) and for 3 different values
of q (q = 0, 0.5, 1) in order to check formula (35) and to confirm the prediction that pinwheel
densities should be independent of q. For β = 1, ρ̂ = 6 and for β → ∞, ρ̂ → π, which is also
apparent from Fig. 6. The relative pinwheel density diminishes with decreasing powerspectral
width (increasing β) and is asymptotically approaching π from above. As expected, the func-
tional form of ρ̂(β) does not depend on the degree of shift symmetry breaking q.

5.3 Lower bound on pinwheel densities

Next we show that relative pinwheel densities of Gaussian orientation maps have an expectation
value larger than π. Following the line of arguments given in [1] we switch to Fourier space.
First, we express C1(0) and ∆C1(0) as functionals of P1(k) as follows:

C1(0) =
1

2π

∫
d2kP1(k) ∆C1(0) = − 1

2π

∫
d2k |k|2P1(k)

The pinwheel density is then given by

ρ =
1

4π

∫
d2k |k|2P1(k)∫
d2kP1(k)

(34)

The exact form of the correlation function C1(r) or P1(k), respectively, at the beginning
of development is not known. In particular, it is to be expected, that these functions vary
from species to species and from individual to individual. The following argument shows that
Eq. (34) implies a quantitative estimate of the pinwheel density. For this purpose we define
a characteristic wavelength Λ of the pattern by setting Λ = 2π/k0 with k0 defined as in
section 4, Eq. (30)

k0 =

∫
dk k P1(k),

where P1(k) denotes the radial part of P1(k), chosen to have norm 1∫
dk P1(k) = 1.



154 The European Physical Journal Special Topics

Rewriting the expression for the pinwheel density as

ρ =
π

Λ2

∫∞
0
dk k3 P1(k)(∫ 2π

0
dk k P1(k)

)3 .
and using Jensen’s inequality,

∫ ∞
0

dk k3 P1(k) ≥
(∫ ∞
0

dk k P1(k)

)3

it follows that ρ can be written

ρ =
π

Λ2
(1 + α) (35)

where α ≥ 0. Thus, the exact form of the power spectral density influences the expected
pinwheel density only via the positive definite functional

α = 3

∫ ∞
0

dk
(k − k0)2

k20
P1(k) +

∫ ∞
0

dk
(k − k0)3

k30
P1(k) (36)

where α is zero, when P1(k) equals the Dirac delta distribution. The first and the second term
are proportional to the variance and skewness of the distribution P1(k), respectively. From this
follows that a Gaussian random pattern of orientation preferences has a minimum pinwheel
density,

ρmin =
π

Λ2

independently of the exact form of its spatial correlations. Because two dimensional GRFs are
ergodic [38], this lower limit is also valid for the pinwheel density in an individual realization
of such a field.
In conclusion, while the pinwheel density depends on the powerspectrum P1(k) it is inde-

pendent of P2(k). As a consequence we conclude that shift-twist symmetry has no effect on the
pinwheel density of Gaussian orientation maps. In particular, the previous result concerning
the lower bound of the pinwheel density remains unaffected.

6 Conclusion

The formation of OPMs in the visual cortex can be modeled by dynamic field equations [28,35,
37]. Key features of such models crucially depend on the symmetries of the dynamics [1]. Here
we introduced a new class of Gaussian random maps which allows to study the consequences of
shift-twist symmetry, a fundamental symmetry of visual cortical circuitry [3], on the layout of
orientation maps. We use this approach to identify signatures of this new symmetry which are
accessible to experimental testing. We also analyzed the consequences of broken shift symmetry
for the initial generation of pinwheel defects in orientation preference maps. Because early
orientation preference maps are predicted to exhibit Gaussian statistics closed form expressions
for early pinwheel densities can be obtained using the theory of Gaussian random fields.
Analyzing these we found that the initial pinwheel density is predicted to be insensitive

to the degree of shift symmetry breaking. This implies that even if shift symmetry is broken,
defect densities lower than π are predicted to develop through the motion and annihilation of
pinwheel pairs. In contradistinction, the breaking of shift symmetry to shift-twist symmetry is
predicted to leave clearcut signatures in the spatial layout of cortical orientation maps. These
signatures can be quantified by the two point correlation functions of the maps, which are
predicted to exhibit a characteristic clover leaf shape. Preliminary evidence suggests that this
predicted signature can be directly verified in ensembles of experimentally measured orientation
maps from the living visual cortex [39].
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7 Appendix A

In this appendix the inverse Fourier transforms of P1(k) and P2(k) are calculated.

P1(k) = A |k|βe−|k|2B P2(k) = q P1(k) e
4iArg(kx+iky) (37)

7.1 P1(k)→ C1(r)

C1(r) =
1

2π

∫
d2k e(ikr)A |k|βe−|k|2B = A

2π

∫ ∞
0

dk k1+βe−k
2B

∫ 2π
0

dφ e(i k |r| cosφ)

= A

∫ ∞
0

dk k1+βe−k
2BJ0(k |r|) = 1

2
AB−

2+β
2 Γ

[
2 + β

2

]
1F1

(
2 + β

2
; 1; − r

2

4B

)
,

where we made use of the formula 6.631 in [40].

∫ ∞
0

dk kµe−k
2BJν(k |r|) = |r|νΓ [ν+µ+12 ]

2ν+1B
1
2 (µ+ν+1)Γ (ν + 1)

1F1

(
ν + µ+ 1

2
; ν + 1; −|r|

2

4B

)
,

(38)

with µ = 1+β, ν = 0. From the definition of A and B follows 12 AB
− 2+β2 Γ [ 2+β2 ] = 1, such that

we get

C1(r) = 1F1

(
2 + β

2
; 1; −|r|

2

4B

)

7.2 P2(k)→ C2(r)

C2(r) =
1

2π

∫
d2k e(ikr)A |k|βe−|k|2Be4 iArgk = A

2π

∫ ∞
0

dk k1+βe−k
2B

∫ 2π
0

dφ e(i k|r| cos(φ−ψr)e4 i φ

=
A

2π

∫ ∞
0

dk k1+βe−k
2B

∫ 2π
0

dφ e(i k|r| cosφe4 i (φ+ψr),

where we denote ψr = Argr. If we use the following expansion (see Abramowitz-Stegun 9.1.44 &
45, p. 361)

eik |r| cosφ = J0(k |r|) + 2
∞∑
n=1

in cos(nφ)Jn(k |r|),

we obtain

= Ae4 iArgr
∫ ∞
0

dk k1+βe−k
2B J4(k |r|) = |r|4e4 iArgr AB

−( 6+β2 )Γ [ 6+β2 ]
768

1F1

(
6 + β

2
; 5; − r

2

4B

)

= (x+ iy)4
AB−(

6+β
2 )Γ [ 6+β2 ]

768
1F1

(
6 + β

2
; 5; − r

2

4B

)

where, again we made use of Eq. (38), this time with µ = 1 + β, ν = 4.
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8 Appendix B: Pinwheel densities

We first do the integral over Rez and Imz, which collapses due to the delta functions. We are
then left with the integral over the gradients. Using the abbreviation

Rx = ∂xRez Ry = ∂yRez Ix = ∂xImz Iy = ∂yImz

the integral states

ρ =
1

(2π)3cAc2G

∫
dRxdRydIxdIy |RxIy −RyIx| exp

(
−R

2
x +R

2
y + I

2
x + I

2
y

2 cG

)

and can be easily evaluated after a coordinate transformation to four dimensional spherical
coordinates, given by

Rx = g cosφ cos θ1 Ry = g cosφ sin θ1 Ix = g sinφ cos θ2 Iy = g sinφ sin θ2

with 0 ≤ g <∞, 0 ≤ φ ≤ π/2, 0 ≤ θ1, θ2 ≤ 2π and volume element

dRxdRydIxdIy =
1

2
g3 sin(2φ) dg dφ dθ1dθ2.

The integral in this coordinates is

ρ =

∫ ∞
0

dg
g5

32π3cAc2G
exp

(
− g2

2cG

) ∫ 2π
0

dθ1

∫ 2π
0

dθ2 |sin(θ1 − θ2)|
∫ π/2

0

dφ sin(2φ)

Integration over the angles yields

ρ =

∫ ∞
0

dg
g5

16π cAc2G
exp

(
− g2

2cG

)

Finally, after integrating over the radial component g we get

ρ =
1

2π

cG

cA
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